login

Revision History for A224577

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
T(n,k)=Number of (n+5)X(k+5) 0..1 matrices with each 6X6 subblock idempotent
(history; published version)
#4 by R. H. Hardin at Wed Apr 10 18:39:04 EDT 2013
STATUS

editing

approved

#3 by R. H. Hardin at Wed Apr 10 18:38:59 EDT 2013
LINKS

R. H. Hardin, <a href="/A224577/b224577.txt">Table of n, a(n) for n = 1..1351</a>

#2 by R. H. Hardin at Wed Apr 10 18:38:14 EDT 2013
NAME

allocated for R. H. Hardin

T(n,k)=Number of (n+5)X(k+5) 0..1 matrices with each 6X6 subblock idempotent

DATA

96608, 18044, 18044, 16696, 5668, 16696, 18868, 5696, 5696, 18868, 22096, 6411, 5896, 6411, 22096, 25769, 7034, 6659, 6659, 7034, 25769, 28708, 7386, 7295, 7394, 7295, 7386, 28708, 33705, 7843, 7884, 8143, 8143, 7884, 7843, 33705, 40120, 9237

OFFSET

1,1

COMMENTS

Table starts

.96608.18044.16696.18868.22096.25769.28708.33705.40120.50747.67088.91787.125249

.18044..5668..5696..6411..7034..7386..7843..9237.11797.15264.19346.23731..28733

.16696..5696..5896..6659..7295..7884..8294..9831.12556.16161.20310.25054..30119

.18868..6411..6659..7394..8143..8714..9164.10807.13624.17332.21731.26592..31785

.22096..7034..7295..8143..8880..9480..9946.11672.14594.18457.22982.27995..33345

.25769..7386..7884..8714..9480.10086.10561.12373.15413.19404.24072.29230..34734

.28708..7843..8294..9164..9946.10561.11032.12921.16072.20202.25024.30332..35979

.33705..9237..9831.10807.11672.12373.12921.14984.18329.22663.27712.33261..39146

.40120.11797.12556.13624.14594.15413.16072.18329.21920.26498.31808.37632..43791

.50747.15264.16161.17332.18457.19404.20202.22663.26498.31362.36961.43072..49535

FORMULA

Empirical for column k:

k=1: a(n) = 2*a(n-1) -2*a(n-2) +2*a(n-3) -a(n-4) +2*a(n-6) -3*a(n-7) +4*a(n-8) -4*a(n-9) +3*a(n-10) -2*a(n-11) -2*a(n-14) +2*a(n-15) -2*a(n-16) +2*a(n-17) -a(n-18) +a(n-19) for n>30

k=2: a(n) = 2*a(n-1) -2*a(n-2) +2*a(n-3) -2*a(n-4) +3*a(n-5) -2*a(n-6) +a(n-7) -a(n-9) +a(n-10) -3*a(n-11) +3*a(n-12) -4*a(n-13) +3*a(n-14) -2*a(n-15) +2*a(n-16) -a(n-17) +a(n-18) +a(n-19) -a(n-20) +a(n-21) -a(n-22) +a(n-23) -a(n-24) for n>33

k=3: a(n) = 3*a(n-1) -4*a(n-2) +4*a(n-3) -3*a(n-4) +a(n-5) +2*a(n-6) -5*a(n-7) +6*a(n-8) -6*a(n-9) +4*a(n-10) -a(n-11) -a(n-12) +2*a(n-13) -2*a(n-14) +2*a(n-15) -a(n-16) for n>21

k=4: a(n) = 3*a(n-1) -4*a(n-2) +4*a(n-3) -3*a(n-4) +a(n-5) +2*a(n-6) -5*a(n-7) +6*a(n-8) -6*a(n-9) +4*a(n-10) -a(n-11) -a(n-12) +2*a(n-13) -2*a(n-14) +2*a(n-15) -a(n-16) for n>20

k=5: a(n) = 4*a(n-1) -6*a(n-2) +3*a(n-3) +3*a(n-4) -6*a(n-5) +5*a(n-6) -4*a(n-7) +3*a(n-8) -3*a(n-10) +3*a(n-11) -a(n-12) for n>16

k=6: a(n) = 3*a(n-1) -3*a(n-2) +a(n-3) +2*a(n-6) -5*a(n-7) +4*a(n-8) -a(n-9) -a(n-12) +2*a(n-13) -a(n-14) for n>18

k=7: a(n) = 3*a(n-1) -3*a(n-2) +a(n-3) +2*a(n-6) -5*a(n-7) +4*a(n-8) -a(n-9) -a(n-12) +2*a(n-13) -a(n-14) for n>18

k=8: a(n) = 3*a(n-1) -3*a(n-2) +a(n-3) +2*a(n-6) -5*a(n-7) +4*a(n-8) -a(n-9) -a(n-12) +2*a(n-13) -a(n-14) for n>18

k=9: a(n) = 3*a(n-1) -3*a(n-2) +a(n-3) +2*a(n-6) -5*a(n-7) +4*a(n-8) -a(n-9) -a(n-12) +2*a(n-13) -a(n-14) for n>18

k=10: a(n) = 3*a(n-1) -3*a(n-2) +a(n-3) +2*a(n-6) -5*a(n-7) +4*a(n-8) -a(n-9) -a(n-12) +2*a(n-13) -a(n-14) for n>18

k=11: a(n) = 4*a(n-1) -6*a(n-2) +3*a(n-3) +3*a(n-4) -6*a(n-5) +5*a(n-6) -4*a(n-7) +3*a(n-8) -3*a(n-10) +3*a(n-11) -a(n-12) for n>16

k=12: a(n) = 3*a(n-1) -3*a(n-2) +a(n-3) +2*a(n-6) -5*a(n-7) +4*a(n-8) -a(n-9) -a(n-12) +2*a(n-13) -a(n-14) for n>18

(note: the larger repeated k>=6 formula also works for k=11)

EXAMPLE

Some solutions for n=2 k=4

..0..0..1..0..0..0..0..0..0....1..0..0..0..0..0..0..0..0

..0..0..1..0..0..0..0..0..1....1..0..0..0..0..0..0..0..0

..0..0..1..0..0..0..0..0..1....1..0..0..0..0..0..0..0..0

..0..0..1..0..0..0..0..0..0....1..0..0..0..0..0..0..0..0

..0..0..1..0..0..0..0..0..1....1..0..0..0..0..0..0..0..0

..0..0..1..0..0..0..0..0..1....1..0..0..0..0..0..0..0..0

..0..0..1..0..0..0..0..0..1....0..0..0..0..0..1..1..1..1

KEYWORD

allocated

nonn,tabl

AUTHOR

R. H. Hardin Apr 10 2013

STATUS

approved

editing

#1 by R. H. Hardin at Wed Apr 10 18:27:52 EDT 2013
NAME

allocated for R. H. Hardin

KEYWORD

allocated

STATUS

approved