reviewed
approved
reviewed
approved
proposed
reviewed
editing
proposed
Number of (n+5)X11 X 11 0..1 matrices with each 6X6 6 X 6 subblock idempotent.
Column 6 of A224577.
Empirical: a(n) = 3*a(n-1) -3*a(n-2) +a(n-3) +2*a(n-6) -5*a(n-7) +4*a(n-8) -a(n-9) -a(n-12) +2*a(n-13) -a(n-14) , for n>18.
Some solutions for n=2:
R. H. Hardin , Apr 10 2013
approved
editing
editing
approved
R. H. Hardin, <a href="/A224575/b224575.txt">Table of n, a(n) for n = 1..210</a>
allocated for R. H. Hardin
Number of (n+5)X11 0..1 matrices with each 6X6 subblock idempotent
25769, 7386, 7884, 8714, 9480, 10086, 10561, 12373, 15413, 19404, 24072, 29230, 34734, 41919, 52000, 65945, 84434, 107959, 136853, 172795, 218668, 278353, 356397, 457838, 588032, 754025, 965735, 1236991, 1586155, 2036626, 2617144, 3363506
1,1
Column 6 of A224577
Empirical: a(n) = 3*a(n-1) -3*a(n-2) +a(n-3) +2*a(n-6) -5*a(n-7) +4*a(n-8) -a(n-9) -a(n-12) +2*a(n-13) -a(n-14) for n>18
Some solutions for n=2
..1..1..1..1..1..0..0..0..0..0..0....0..1..0..0..0..0..0..0..0..0..0
..0..0..0..0..0..0..0..0..0..0..0....0..1..0..0..0..0..0..0..0..0..0
..0..0..0..0..0..0..0..0..0..0..1....0..1..0..0..0..0..0..0..0..0..1
..0..0..0..0..0..0..0..0..0..0..0....0..1..0..0..0..0..0..0..0..0..1
..0..0..0..0..0..0..0..0..0..0..0....0..0..0..0..0..0..0..0..0..0..1
..0..0..0..0..0..0..0..0..0..0..1....0..0..0..0..0..0..0..0..0..0..1
..0..0..0..0..0..0..0..0..0..0..1....0..0..0..0..0..0..0..0..0..0..1
allocated
nonn
R. H. Hardin Apr 10 2013
approved
editing
allocated for R. H. Hardin
allocated
approved