proposed
approved
proposed
approved
editing
proposed
Empirical g.f.: 6*x*(30 + 29*x - 177*x^2 - 187*x^3 + 188*x^4 + 197*x^5 - 5*x^6 - 23*x^7) / ((1 - x - x^2)*(1 - 2*x - 11*x^2 + 14*x^4 + 2*x^5 - 2*x^6)). - Colin Barker, Jun 12 2018
Cf. A205823.
approved
editing
editing
approved
Number of (n+1)X4 X 4 0..2 arrays with the number of clockwise edge increases in every 2X2 2 X 2 subblock unequal to the number of anticlockwise counterclockwise edge increases.
Column 3 of A205823.
Empirical: a(n) = 3*a(n-1) + 10*a(n-2) - 13*a(n-3) - 25*a(n-4) + 12*a(n-5) + 18*a(n-6) - 2*a(n-8).
Some solutions for n=4:
R. H. Hardin , Feb 01 2012
approved
editing
_R. H. Hardin (rhhardin(AT)att.net) _ Feb 01 2012
editing
approved
R. H. Hardin, <a href="/A205818/b205818.txt">Table of n, a(n) for n = 1..210</a>
allocated for Ron HardinNumber of (n+1)X4 0..2 arrays with the number of clockwise edge increases in every 2X2 subblock unequal to the number of anticlockwise edge increases
180, 714, 2880, 12318, 53100, 230532, 1002240, 4361064, 18980472, 82617132, 359622708, 1565418528, 6814215036, 29662110636, 129118523304, 562050276348, 2446593518052, 10649972628456, 46359118343628, 201800318106108
1,1
Column 3 of A205823
Empirical: a(n) = 3*a(n-1) +10*a(n-2) -13*a(n-3) -25*a(n-4) +12*a(n-5) +18*a(n-6) -2*a(n-8)
Some solutions for n=4
..1..0..0..2....0..0..2..2....2..2..2..0....1..1..1..0....1..2..1..1
..1..2..1..2....2..1..1..0....1..0..1..0....2..0..2..2....1..0..0..2
..1..0..1..0....2..0..2..2....1..2..1..2....2..1..1..0....2..2..1..1
..2..0..2..2....1..1..1..0....0..2..0..2....2..0..2..2....1..0..0..2
..2..1..1..0....2..0..2..0....0..1..1..1....2..1..1..0....1..2..1..2
allocated
nonn
R. H. Hardin (rhhardin(AT)att.net) Feb 01 2012
approved
editing
allocated for Ron Hardin
allocated
approved