login

Revision History for A199875

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
G.f. satisfies: A(x) = exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)^3 * x^k] * x^n*A(x)^n/n ).
(history; published version)
#8 by Russ Cox at Fri Mar 30 18:37:32 EDT 2012
AUTHOR

_Paul D. Hanna (pauldhanna(AT)juno.com), _, Nov 11 2011

Discussion
Fri Mar 30
18:37
OEIS Server: https://oeis.org/edit/global/213
#7 by T. D. Noe at Fri Nov 11 13:15:29 EST 2011
STATUS

proposed

approved

#6 by Paul D. Hanna at Fri Nov 11 10:43:26 EST 2011
STATUS

editing

proposed

#5 by Paul D. Hanna at Fri Nov 11 10:43:23 EST 2011
NAME

G.f. satisfies: A(x) = exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)^3 * x^k] * x^n*A(x)^n/n ).

STATUS

proposed

editing

#4 by Paul D. Hanna at Fri Nov 11 10:31:50 EST 2011
STATUS

editing

proposed

#3 by Paul D. Hanna at Fri Nov 11 10:31:48 EST 2011
NAME

G.f.: A(x) = exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)^3 * x^k] * x^n*A(x)^n/n ).

FORMULA

G.f. satisfies: A(x) = G(x*A(x)) where G(x) = A(x/G(x)) is the g.f. of A198950.

EXAMPLE

G.f.: A(x) = 1 + x + 3*x^2 + 12*x^3 + 51*x^4 + 233*x^5 + 1126*x^6 +...

log(A(x)) = (1 + x)*x*A(x) + (1 + 2^3*x) + x^2)*x^2*A(x)^2/2 +

PROG

(PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^3*x^j)*(x*A+x*O(x^n))^m/m))); polcoeff(A, n, x)}

CROSSREFS

Cf. A198950.

#2 by Paul D. Hanna at Fri Nov 11 10:30:35 EST 2011
NAME

allocated for Paul D. Hanna

G.f.: A(x) = exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)^3 * x^k] * x^n*A(x)^n/n ).

DATA

1, 1, 3, 12, 51, 233, 1126, 5639, 29001, 152364, 814268, 4412733, 24193883, 133964582, 748084930, 4208233719, 23825366565, 135657095301, 776310257573, 4462597387720, 25757503356976, 149216036734018, 867316809868018, 5056666312351966, 29564095191382323

OFFSET

0,3

FORMULA

G.f. satisfies: A(x) = G(x*A(x)) where G(x) = A(x/G(x)) is the g.f. of A198950.

EXAMPLE

G.f.: A(x) = 1 + x + 3*x^2 + 12*x^3 + 51*x^4 + 233*x^5 + 1126*x^6 +...

where

log(A(x)) = (1 + x)*x*A(x) + (1 + 2^3*x) + x^2)*x^2*A(x)^2/2 +

(1 + 3^3*x + 3^3*x^2 + x^3)*x^3*A(x)^3/3 +

(1 + 4^3*x + 6^3*x^2 + 4^3*x^3 + x^4)*x^4*A(x)^4/4 +

(1 + 5^3*x + 10^3*x^2 + 10^3*x^3 + 5^3*x^4 + x^5)*x^5*A(x)^5/5 +...

more explicitly,

log(A(x)) = x + 5*x^2/2 + 28*x^3/3 + 149*x^4/4 + 821*x^5/5 + 4664*x^6/6 + 26839*x^7/7 +...

The g.f. satisfies A(x) = G(x*A(x)) where G(x) is the g.f. of A198950:

G(x) = 1 + x + 2*x^2 + 5*x^3 + 10*x^4 + 22*x^5 + 58*x^6 + 150*x^7 + 392*x^8 +...

PROG

(PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^3*x^j)*(x*A+x*O(x^n))^m/m))); polcoeff(A, n, x)}

CROSSREFS

Cf. A198950.

KEYWORD

allocated

nonn

AUTHOR

Paul D. Hanna (pauldhanna(AT)juno.com), Nov 11 2011

STATUS

approved

editing

#1 by Paul D. Hanna at Fri Nov 11 10:23:27 EST 2011
NAME

allocated for Paul D. Hanna

KEYWORD

allocated

STATUS

approved