proposed
approved
proposed
approved
editing
proposed
Number of 2nX2 2n X 2 0..2 arrays with values 0..2 introduced in row major order and each element equal to an even number of horizontal and vertical neighbors.
Column 1 of A198642.
Empirical: a(n) = 12*a(n-1) -16*a(n-2) for n>3.
Conjectures from Colin Barker, May 15 2018: (Start)
G.f.: 4*x*(1 - x)*(1 - 2*x) / (1 - 12*x + 16*x^2).
a(n) = ((6 - 2*sqrt(5))^n*(-5+3*sqrt(5)) + (2*(3+sqrt(5)))^n*(5+3*sqrt(5))) / (16*sqrt(5)) for n>1.
(End)
Some solutions for n=3:
Cf. A198642.
R. H. Hardin , Oct 27 2011
approved
editing
_R. H. Hardin (rhhardin(AT)att.net) _ Oct 27 2011
editing
approved
R. H. Hardin, <a href="/A198638/b198638.txt">Table of n, a(n) for n = 1..200</a>
allocated for Ron HardinNumber of 2nX2 0..2 arrays with values 0..2 introduced in row major order and each element equal to an even number of horizontal and vertical neighbors
4, 36, 376, 3936, 41216, 431616, 4519936, 47333376, 495681536, 5190844416, 54359228416, 569257230336, 5961339109376, 62427953627136, 653754017775616, 6846200955273216, 71694347178868736, 750792950862053376
1,1
Column 1 of A198642
Empirical: a(n) = 12*a(n-1) -16*a(n-2) for n>3
Some solutions for n=3
..0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1
..1..0....1..2....1..0....1..2....2..0....2..0....1..0....2..0....1..2....2..0
..0..2....2..0....2..1....0..1....0..1....0..1....2..1....1..2....0..1....1..2
..2..0....0..2....0..2....2..2....1..2....1..2....1..2....2..1....1..2....0..1
..1..1....2..0....2..0....2..2....2..0....2..1....0..1....0..2....2..1....1..0
..1..1....1..2....0..2....1..0....0..1....1..2....2..0....2..0....0..2....0..2
allocated
nonn
R. H. Hardin (rhhardin(AT)att.net) Oct 27 2011
approved
editing
allocating
allocated
allocated for Ron Hardin
allocating
approved