proposed
approved
proposed
approved
editing
proposed
E. Emeric Deutsch, <a href="http://arxiv.org/abs/1111.4288">Tree statistics from Matula numbers</a>, arXiv:1111.4288 [math.CO], 2011.
E. Emeric Deutsch, <a href="https://doi.org/10.1016/j.dam.2012.05.012">Rooted tree statistics from Matula numbers</a>, Discrete Appl. Math., 160, 2012, 2314-2322.
a(1)=0; a(2)=1; if n = prime(t) (the t-th prime, t>=2), then a(n)=a(t)*(1+G(t))/G(t); if n=rs r*s (r,s>=2), then a(n)=a(r)*a(s)*G(n)/[G(r)*G(s)]; G(m) denotes the number of prime divisors of m counted with multiplicities. The Maple program is based on this recursive formula.
proposed
editing
editing
proposed
r[n_] := FactorInteger[n][[1, 1]];
s[n_] := n/r[n];
a[n_] := Which[n == 1, 0, n == 2, 1, PrimeOmega[n] == 1, a[PrimePi[n]]*(1 + PrimeOmega[PrimePi[n]])/PrimeOmega[PrimePi[n]], True, a[r[n]]*a[s[n]]* PrimeOmega[n]/(PrimeOmega[r[n]]*PrimeOmega[s[n]])];
Table[a[n], {n, 1, 90}] (* Jean-François Alcover, Jun 25 2024, after Maple code *)
approved
editing
reviewed
approved
proposed
reviewed
editing
proposed
E. Deutsch, <a href="https://doi.org/10.1016/j.dam.2012.05.012">Rooted tree statistics from Matula numbers</a>, Discrete Appl. Math., 160, 2012, 2314-2322.
proposed
editing
editing
proposed