proposed
approved
proposed
approved
editing
proposed
editing
proposed
Fixed points: T(n,k)=k for k=1, and k = (2/3)*(n+1) when an integer. [Lévy, chapter 1 section 2 equation (3)]
Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/FractalSequence.html">Fractal sequence</a>
Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Interspersion.html">Interspersion</a>
MathWorld, <a href="http://mathworld.wolfram.com/FractalSequence.html">Fractal sequence</a>
MathWorld, <a href="http://mathworld.wolfram.com/Interspersion.html">Interspersion</a>
(End)
From Kevin Ryde, Oct 09 2020: (Start)
T(n,k) = 2*k-1 if 2*k-1 <= n, or 2*(n+1-k) if 2*k-1 > n. [Lévy, chapter 1 section 1 equations (a),(b)]
Fixed points: T(n,k)=k for k=1, and k = (2/3)*(n+1) when an integer. [Lévy, chapter 1 section 2 equation (3)]
T(n,k) = 2*k-1 if 2*k-1 <= n, or 2*(n+1-k) if 2*k-1 > n. [Lévy, chapter 1 section 1 equations (a),(b)] - Kevin Ryde, Oct 09 2020
Paul Lévy, <a href="http://www.numdam.org/item?id=CM_1951__8__1_0">Sur quelques classes de permutations</a>, Compositio Mathematica, Volume 8, 1951, pages 1-48. P_n = g(n).
T(n,k) = 2*k-1 if 2*k-1 <= n, or 2*(n+1-k) if 2*k-1 > n. [Lévy, chapter 1 section 1 equations (a),(b)] - Kevin Ryde, Oct 09 2020
(PARI) T(n, k) = min(k<<1-1, (n-k+1)<<1); \\ Kevin Ryde, Oct 09 2020
approved
editing
proposed
approved
editing
proposed