login

Revision History for A184358

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
a(n) = (n+1)!^2/2^n.
(history; published version)
#10 by Joerg Arndt at Sat Jun 25 08:25:28 EDT 2022
STATUS

reviewed

approved

#9 by Vaclav Kotesovec at Sat Jun 25 06:06:47 EDT 2022
STATUS

proposed

reviewed

#8 by Amiram Eldar at Sat Jun 25 04:10:29 EDT 2022
STATUS

editing

proposed

#7 by Amiram Eldar at Sat Jun 25 03:54:39 EDT 2022
FORMULA

From Amiram Eldar, Jun 25 2022: (Start)

Sum_{n>=0} 1/a(n) = (BesselI(0, 2*sqrt(2)) - 1)/2.

Sum_{n>=0} (-1)^n/a(n) = (1 - BesselJ(0, 2*sqrt(2)))/2. (End)

#6 by Amiram Eldar at Sat Jun 25 03:53:35 EDT 2022
NAME

a(n) = (n+1)!^2/2^n.

DATA

1, 2, 9, 72, 900, 16200, 396900, 12700800, 514382400, 25719120000, 1556006760000, 112032486720000, 9466745127840000, 927741022528320000, 104370865034436000000, 13359470724407808000000, 1930443519676928256000000, 312731850187662377472000000

COMMENTS

Self-convolution of A184359.

FORMULA

Self-convolution of A184359.

EXAMPLE

G.f.: A(x) = 1 + 2*x + 9*x^2 + 72*x^3 + 900*x^4 + 16200*x^5 +...

MATHEMATICA

a[n_] := (n + 1)!^2/2^n; Array[a, 20, 0] (* Amiram Eldar, Jun 25 2022 *)

PROG

(PARI) {a(n)=(n+1)!^2/2^n}

CROSSREFS
STATUS

approved

editing

#5 by Russ Cox at Fri Mar 30 18:37:25 EDT 2012
AUTHOR

_Paul D. Hanna (pauldhanna(AT)juno.com), _, Jan 16 2011

Discussion
Fri Mar 30
18:37
OEIS Server: https://oeis.org/edit/global/213
#4 by T. D. Noe at Sun Jan 16 14:28:52 EST 2011
STATUS

reviewed

approved

#3 by Joerg Arndt at Sun Jan 16 05:38:33 EST 2011
STATUS

proposed

reviewed

#2 by Paul D. Hanna at Sun Jan 16 00:28:24 EST 2011
NAME

allocated for Paul D. Hanna

a(n) = (n+1)!^2/2^n.

DATA

1, 2, 9, 72, 900, 16200, 396900, 12700800, 514382400, 25719120000, 1556006760000, 112032486720000, 9466745127840000, 927741022528320000, 104370865034436000000, 13359470724407808000000, 1930443519676928256000000

OFFSET

0,2

FORMULA

Self-convolution of A184359.

EXAMPLE

G.f.: A(x) = 1 + 2*x + 9*x^2 + 72*x^3 + 900*x^4 + 16200*x^5 +...

A(x)^(1/2) = 1 + x + 4*x^2 + 32*x^3 + 410*x^4 + 7562*x^5 + 188736*x^6 +...+ A184359(n)*x^n +...

PROG

(PARI) {a(n)=(n+1)!^2/2^n}

CROSSREFS
KEYWORD

allocated

nonn

AUTHOR

Paul D. Hanna (pauldhanna(AT)juno.com), Jan 16 2011

STATUS

approved

proposed

#1 by Paul D. Hanna at Wed Jan 12 12:53:46 EST 2011
NAME

allocated for Paul D. Hanna

KEYWORD

allocated

STATUS

approved