reviewed
approved
reviewed
approved
proposed
reviewed
editing
proposed
Number of nX3 n X 3 binary arrays with every 1 having exactly one king-move neighbor equal to 1.
Column 3 of A183442.
Empirical: a(n) = a(n-1) + 3*a(n-2) + 8*a(n-3) - a(n-4) - 2*a(n-5) - 2*a(n-6).
Empirical g.f.: x*(3 + 10*x + 7*x^2 - 3*x^3 - 4*x^4 - 2*x^5) / (1 - x - 3*x^2 - 8*x^3 + x^4 + 2*x^5 + 2*x^6). - Colin Barker, Mar 29 2018
Some solutions for 5X35 X 3.
Cf. A183442.
R. H. Hardin , Jan 04 2011
approved
editing
_R. H. Hardin (rhhardin(AT)att.net) _ Jan 04 2011
proposed
approved
R. H. Hardin, <a href="/A183436/b183436.txt">Table of n, a(n) for n = 1..200</a>
allocated for Ron HardinNumber of nX3 binary arrays with every 1 having exactly one king-move neighbor equal to 1
3, 13, 29, 89, 273, 751, 2221, 6485, 18647, 54395, 157947, 457879, 1330821, 3863375, 11214839, 32568969, 94558013, 274542857, 797165417, 2314532695, 6720246173, 19512370773, 56654003695, 164495136155, 477612471027, 1386747980543
1,1
Column 3 of A183442
Empirical: a(n)=a(n-1)+3*a(n-2)+8*a(n-3)-a(n-4)-2*a(n-5)-2*a(n-6)
Some solutions for 5X3
..0..0..0....0..1..0....0..0..1....1..0..0....1..0..0....0..0..0....1..0..0
..0..1..0....0..1..0....0..1..0....1..0..0....1..0..1....0..0..0....1..0..0
..1..0..0....0..0..0....0..0..0....0..0..0....0..0..1....0..1..1....0..0..0
..0..0..1....0..0..0....0..0..1....0..0..1....0..0..0....0..0..0....1..0..0
..0..0..1....0..1..1....0..0..1....0..1..0....0..0..0....1..1..0....0..1..0
allocated
nonn
R. H. Hardin (rhhardin(AT)att.net) Jan 04 2011
approved
proposed
allocated for Ron Hardin
allocated
approved