reviewed
approved
reviewed
approved
proposed
reviewed
editing
proposed
Triangle read by rows: T(n,k) is the number of partial isometries (of an n-chain) of height k (height of alpha = |Im(alpha)|).
T(n,0)=1, T(n,1) = n^2 and T(n,k)=2*(2*n-k+1)*binomial(n,k)/(k+1), (k > 1).
1.;
1...., 1.;
1...., 4...., 2.;
1...., 9..., 10...., 2.;
1..., 16..., 28..., 12...., 2.;
1..., 25..., 60..., 40..., 14...., 2.;
1..., 36.., 110.., 100..., 54..., 16...., 2.;
1..., 49.., 182.., 210.., 154..., 70..., 18...., 2.;
1..., 64.., 280.., 392.., 364.., 224..., 88..., 20...., 2.;
1..., 81.., 408.., 672.., 756.., 588.., 312.., 108..., 22...., 2.;
1.., 100.., 570., 1080., 1428., 1344.., 900.., 420.., 130..., 24...., 2.;
approved
editing
reviewed
approved
proposed
reviewed
editing
proposed
T[_, 0] = 1; T[n_, 1] := n^2; T[n_, k_] := 2*(2*n - k + 1)*Binomial[n, k] / (k + 1);
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 25 2017 *)
approved
editing
proposed
approved
editing
proposed