Amiram Eldar, <a href="/A181804/b181804_1.txt">Table of n, a(n) for n = 1..10000</a>
Amiram Eldar, <a href="/A181804/b181804_1.txt">Table of n, a(n) for n = 1..10000</a>
reviewed
approved
proposed
reviewed
editing
proposed
Amiram Eldar, <a href="/A181804/b181804_1.txt">Table of n, a(n) for n = 1..10000</a>
seq[max_] := Module[{hcn = {}, hcnmax, d, dm = 0, s = {1}}, Do[d = DivisorSigma[0, n]; If[d > dm, dm = d; AppendTo[hcn, n]], {n, 1, max}]; hcnmax = hcn[[-1]]; Do[s = Union[Join[s, Select[LCM[hcn[[k]], s], # <= hcnmax &]]], {k, 2, Length[hcn]}]; s]; seq[300000] (* Amiram Eldar, Jun 23 2023 *)
A. Achim Flammenkamp, <a href="http://wwwhomes.uni-bielefeld.de/achim/highly.txt">List of the first 1200 highly composite numbers</a>.
Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/HighlyCompositeNumber.html">Highly composite number</a>.
Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/LeastCommonMultiple.html">Least Common Multiple</a> (LCM).
Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ProperDivisor.html">Proper Divisor</a>.
approved
editing
_Matthew Vandermast (ghodges14(AT)comcast.net), _, Nov 27 2010
proposed
approved
allocated for Matthew VandermastList of numbers that are LCMs of some set of highly composite numbers (A002182).
1, 2, 4, 6, 12, 24, 36, 48, 60, 72, 120, 144, 180, 240, 360, 720, 840, 1260, 1680, 2520, 5040, 7560, 10080, 15120, 20160, 25200, 27720, 30240, 45360, 50400, 55440, 60480, 75600, 83160, 90720, 100800, 110880, 151200, 166320, 181440, 221760, 226800, 277200
1,2
Numbers n such that A181801(n) is higher than A181801(d) for any proper divisor d of n. Also, numbers n such that row n of A181802 is identical to no previous row of A181802.
A002182 is a proper subsequence of this sequence. 72 is the first LCM of some set of highly composite numbers that is not itself highly composite.
A. Flammenkamp, <a href="http://wwwhomes.uni-bielefeld.de/achim/highly.txt">List of the first 1200 highly composite numbers</a>
Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/HighlyCompositeNumber.html">Highly composite number</a>
Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/LeastCommonMultiple.html">Least Common Multiple</a> (LCM)
Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ProperDivisor.html">Proper Divisor</a>
1, 2, 4, 6, 12, 24 and 36 are all highly composite numbers, and their least common multiple (LCM) is 72. Hence, 72 is a member of the sequence.
allocated
nonn
Matthew Vandermast (ghodges14(AT)comcast.net), Nov 27 2010
approved
proposed