reviewed
approved
reviewed
approved
proposed
reviewed
editing
proposed
31, 11, 313, 23, 163, 53, 157, 43, 41, 71, 103, 137, 61, 127, 193, 227, 113, 109, 107, 101, 277, 127, 101, 223, 113, 181, 251, 571, 233, 409, 151, 257, 211, 317, 491, 557, 661, 733, 367, 433, 359, 313, 491, 271, 233, 509, 281, 241, 311, 271, 373, 1163, 613, 571
G. C. Greubel, <a href="/A178561/b178561.txt">Table of n, a(n) for n = 1..10000</a>
2*13 + prime(3) = 26 + 5 = 31 = prime(11), soddigsum(13)=soddigsum(31)=4
2*2 + prime(4) = 4 + 7 = 11 = prime(5), soddigsum(2)=soddigsum(11)=2
2*151 + prime(5) = 302 + 11 = 313 = prime(65), soddigsum(151)=soddigsum(313)=7
2*5 + prime(6) = 10 + 13 = 23 = prime(9), soddigsum(5)=soddigsum(23)=5, etc.
(PARI) a(n) = {my(p=2, q=prime(n+2)+2*p); while ((!isprime(q) || (sumdigits(p) != sumdigits(q))), p = nextprime(p+1); q = prime(n+2) + 2*p); q; }
vector(70, n, a(n)) \\ G. C. Greubel and Michel Marcus, Feb 26 2019
a(37) corrected by G. C. Greubel, Feb 16 2019
approved
editing
editing
approved
See comments in A178548.
From Robert G. Wilson v, Aug 23 2010: (Start)
(End)
f[n_] := Block[{p = 2}, While[q = 2 p + Prime[n + 2]; !PrimeQ@q || Plus @@ IntegerDigits@p != Plus @@ IntegerDigits@q, p = NextPrime@p]; q]; Array[f, 53] (* _Robert G. Wilson v_, Aug 23 2010 *)
I removed all of the All comments and added several examples and a Mathematica coding _removed by _Robert G. Wilson v_, Aug 23 2010
approved
editing
I removed all of the comments and added several examples and a Mathematica coding _Robert G. Wilson v (rgwv(AT)rgwv.com), _, Aug 23 2010
2*13+prime(3)=26+5=31=prime(11), sod(13)=sod(31)=4
2*2+prime(4)=4+7=11=prime(5), sod(2)=sod(11)=2
2*151+prime(5)=302+11=313=prime(65), sod(151)=sod(313)=7
2*5+prime(6)=10+13=23=prime(9), sod(5)=sod(23)=5
2*73+prime(7)=146+17=163=prime(38), sod(73)=sod(163)=10
2*17+prime(8)=34+19=53=prime(16), sod(17)=sod(53)=8
2*67+prime(9)=134+23=157=prime(37), sod(67)=sod(157)=13
2*7+prime(10)=14+29=43=prime(14), sod(7)=sod(43)=7
2*5+prime(11)=10+31=41=prime(13), sod(5)=sod(41)=5
2*17+prime(12)=34+37=71=prime(20), sod(17)=sod(71)=8
2*31+prime(13)=62+41=103=prime(27), sod(31)=sod(103)=4
2*47+prime(14)=94+43=137=prime(33), sod(47)=sod(137)=11
2*7+prime(15)=14+47=61=prime(18), sod(7)=sod(61)=7
2*37+prime(16)=74+53=127=prime(31), sod(37)=sod(127)=10
2*67+prime(17)=134+59=193=prime(44), sod(57)=sod(193)=13
2*83+prime(18)=166+61=227=prime(49), sod(83)=sod(227)=11
2*23+prime(19)=46+67=113=prime(30), sod(23)=sod(113)=5
2*19+prime(20)=38+71=109=prime(29), sod(19)=sod(109)=10
2*17+prime(21)=34+73=107=prime(28), sod(17)=sod(107)=8
2*11+prime(22)=22+79=101=prime(26), sod(11)=sod(101)=2
2*97+prime(23)=194+83=277=prime(59), sod(97)=sod(277)=16
2*19+prime(24)=38+89=127=prime(31), sod(19)=sod(127)=10
2*2+prime(25)=4+97=101=prime(26), sod(2)=sod(101)=2
2*61+prime(26)=122+101=223=prime(48), sod(61)=sod(223)=7
2*5+prime(27)=10+103=113=prime(30), sod(5)=sod(113)=5
2*37+prime(28)=74+107=181=prime(42), sod(37)=sod(181)=10
2*71+prime(29)=142+109=251=prime(54), sod(71)=sod(251)=8
2*229+prime(30)=458+113=571=prime(105), sod(229)=sod(571)=13
2*53+prime(31)=106+127=233=prime(51), sod(53)=sod(233)=8
2*139+prime(32)=278+131=409=prime(80), sod(139)=sod(409)=13
2*7+prime(33)=14+137=151=prime(36), sod(7)=sod(151)=7
2*59+prime(34)=118+139=257=prime(55), sod(59)=sod(257)=14
2*31+prime(35)=62+149=211=prime(47), sod(31)=sod(211)=4
2*83+prime(36)=166+151=317=prime(66), sod(83)=sod(317)=11
2*167+prime(37)=334+157=491=prime(94), sod(167)=sod(491)=14
2*197+prime(38)=394+163=557=prime(102), sod(197)=sod(557)=17
2*247+prime(39)=494+167=661=prime(121), sod(247)=sod(661)=13
2*97+prime(40)=194+173=367=prime(73), sod(97)=sod(367)=16
2*127+prime(41)=254+179=433=prime(84), sod(127)=sod(433)=10
2*89+prime(42)=178+181=359=prime(77), sod(89)=sod(359)=17
2*61+prime(43)=122+191=313=prime(65), sod(61)=sod(313)=7
2*149+prime(44)=298+193=491=prime(94), sod(149)=sod(491)=14
2*37+prime(45)=74+197=271=prime(58), sod(37)=sod(271)=10
2*17+prime(46)=34+199=233=prime(51), sod(17)=sod(233)=8
2*149+prime(47)=298+211=509=prime(97), sod(149)=sod(509)=14
2*29+prime(48)=58+223=281=prime(60), sod(29)=sod(281)=11
2*7+prime(49)=14+227=241=prime(53), sod(7)=sod(241)=7
2*41+prime(50)=82+229=311=prime(64), sod(41)=sod(311)=5
2*19+prime(51)=38+233=271=prime(58), sod(19)=sod(271)=10
2*67+prime(52)=134+239=373=prime(74), sod(67)=sod(373)=13
2*461+prime(53)=922+241=1163=prime(192), sod(461)=sod(1163)=11
2*181+prime(54)=362+251=613=prime(112), sod(181)=sod(613)=10
2*157+prime(55)=314+257=571=prime(105), sod(157)=sod(571)=13
2*97+prime(56)=394+263=457=prime(88), sod(97)=sod(457)=16
2*19+prime(57)=38+269=307=prime(63), sod(19)=sod(307)=10
2*89+prime(58)=178+271=449=prime(87), sod(89)=sod(449)=17
2*83+prime(59)=166+277=443=prime(86), sod(83)=sod(443)=11
2*79+prime(60)=158+281=439=prime(85), sod(79)=sod(439)=16
2*167+prime(61)=354+283=617=prime(113), sod(167)=sod(617)=14
2*139+prime(62)=278+293=571=prime(105), sod(139)=sod(571)=13
2*107+prime(63)=214+307=521=prime(98), sod(107)=sod(521)=8
2*453+prime(64)=906+311=1217=prime(199), sod(453)=sod(1217)=13
2*353+prime(65)=706+313=1019=prime(171), sod(353)=sod(1019)=11
2*7+prime(66)=14+317=331=prime(67), sod(7)=sod(331)=7
2*443+prime(67)=886+331=1217=prime(199), sod(443)=sod(1217)=11
2*491+prime(68)=982+337=1319=prime(215), sod(491)=sod(1319)=14
2*157+prime(69)=314+347=661=prime(121), sod(157)=sod(661)=13
2*47+prime(70)=94+349=443=prime(86), sod(47)=sod(443)=11
2*97+prime(71)=194+353=547=prime(101), sod(97)=sod(547)=16
2*37+prime(72)=74+359=433=prime(84), sod(37)=sod(433)=10
i=1: 2*13+prime(3)=26+5=31=prime(11), sod(13)=sod(31)=4, 31 is first term
i=2: 2*2+prime(4)=4+7=11=prime(5), sod(2)=sod(11)=2, 11 is 2nd term
2*151+prime(5)=302+11=313=prime(65), sod(151)=sod(313)=7
2*5+prime(6)=10+13=23=prime(9), sod(5)=sod(23)=5, etc.
f[n_] := Block[{p = 2}, While[q = 2 p + Prime[n + 2]; !PrimeQ@q || Plus @@ IntegerDigits@p != Plus @@ IntegerDigits@q, p = NextPrime@p]; q]; Array[f, 53]
I removed all of the comments and added several examples and a Mathematica coding Robert G. Wilson v (rgwv(AT)rgwv.com), Aug 23 2010
Primes q from A178548.
31, 11, 313, 23, 163, 53, 157, 43, 41, 71, 103, 137, 61, 127, 193, 227, 113, 109, 107, 101, 277, 127, 101, 223, 113, 181, 251, 571, 233, 409, 151, 257, 211, 317, 491, 557, 661, 367, 433, 359, 313, 491, 271, 233, 509, 281, 241, 311, 271, 373, 1163, 613, 571
1,1
See comments in A178548
2*13+prime(3)=26+5=31=prime(11), sod(13)=sod(31)=4
2*2+prime(4)=4+7=11=prime(5), sod(2)=sod(11)=2
2*151+prime(5)=302+11=313=prime(65), sod(151)=sod(313)=7
2*5+prime(6)=10+13=23=prime(9), sod(5)=sod(23)=5
2*73+prime(7)=146+17=163=prime(38), sod(73)=sod(163)=10
2*17+prime(8)=34+19=53=prime(16), sod(17)=sod(53)=8
2*67+prime(9)=134+23=157=prime(37), sod(67)=sod(157)=13
2*7+prime(10)=14+29=43=prime(14), sod(7)=sod(43)=7
2*5+prime(11)=10+31=41=prime(13), sod(5)=sod(41)=5
2*17+prime(12)=34+37=71=prime(20), sod(17)=sod(71)=8
2*31+prime(13)=62+41=103=prime(27), sod(31)=sod(103)=4
2*47+prime(14)=94+43=137=prime(33), sod(47)=sod(137)=11
2*7+prime(15)=14+47=61=prime(18), sod(7)=sod(61)=7
2*37+prime(16)=74+53=127=prime(31), sod(37)=sod(127)=10
2*67+prime(17)=134+59=193=prime(44), sod(57)=sod(193)=13
2*83+prime(18)=166+61=227=prime(49), sod(83)=sod(227)=11
2*23+prime(19)=46+67=113=prime(30), sod(23)=sod(113)=5
2*19+prime(20)=38+71=109=prime(29), sod(19)=sod(109)=10
2*17+prime(21)=34+73=107=prime(28), sod(17)=sod(107)=8
2*11+prime(22)=22+79=101=prime(26), sod(11)=sod(101)=2
2*97+prime(23)=194+83=277=prime(59), sod(97)=sod(277)=16
2*19+prime(24)=38+89=127=prime(31), sod(19)=sod(127)=10
2*2+prime(25)=4+97=101=prime(26), sod(2)=sod(101)=2
2*61+prime(26)=122+101=223=prime(48), sod(61)=sod(223)=7
2*5+prime(27)=10+103=113=prime(30), sod(5)=sod(113)=5
2*37+prime(28)=74+107=181=prime(42), sod(37)=sod(181)=10
2*71+prime(29)=142+109=251=prime(54), sod(71)=sod(251)=8
2*229+prime(30)=458+113=571=prime(105), sod(229)=sod(571)=13
2*53+prime(31)=106+127=233=prime(51), sod(53)=sod(233)=8
2*139+prime(32)=278+131=409=prime(80), sod(139)=sod(409)=13
2*7+prime(33)=14+137=151=prime(36), sod(7)=sod(151)=7
2*59+prime(34)=118+139=257=prime(55), sod(59)=sod(257)=14
2*31+prime(35)=62+149=211=prime(47), sod(31)=sod(211)=4
2*83+prime(36)=166+151=317=prime(66), sod(83)=sod(317)=11
2*167+prime(37)=334+157=491=prime(94), sod(167)=sod(491)=14
2*197+prime(38)=394+163=557=prime(102), sod(197)=sod(557)=17
2*247+prime(39)=494+167=661=prime(121), sod(247)=sod(661)=13
2*97+prime(40)=194+173=367=prime(73), sod(97)=sod(367)=16
2*127+prime(41)=254+179=433=prime(84), sod(127)=sod(433)=10
2*89+prime(42)=178+181=359=prime(77), sod(89)=sod(359)=17
2*61+prime(43)=122+191=313=prime(65), sod(61)=sod(313)=7
2*149+prime(44)=298+193=491=prime(94), sod(149)=sod(491)=14
2*37+prime(45)=74+197=271=prime(58), sod(37)=sod(271)=10
2*17+prime(46)=34+199=233=prime(51), sod(17)=sod(233)=8
2*149+prime(47)=298+211=509=prime(97), sod(149)=sod(509)=14
2*29+prime(48)=58+223=281=prime(60), sod(29)=sod(281)=11
2*7+prime(49)=14+227=241=prime(53), sod(7)=sod(241)=7
2*41+prime(50)=82+229=311=prime(64), sod(41)=sod(311)=5
2*19+prime(51)=38+233=271=prime(58), sod(19)=sod(271)=10
2*67+prime(52)=134+239=373=prime(74), sod(67)=sod(373)=13
2*461+prime(53)=922+241=1163=prime(192), sod(461)=sod(1163)=11
2*181+prime(54)=362+251=613=prime(112), sod(181)=sod(613)=10
2*157+prime(55)=314+257=571=prime(105), sod(157)=sod(571)=13
2*97+prime(56)=394+263=457=prime(88), sod(97)=sod(457)=16
2*19+prime(57)=38+269=307=prime(63), sod(19)=sod(307)=10
2*89+prime(58)=178+271=449=prime(87), sod(89)=sod(449)=17
2*83+prime(59)=166+277=443=prime(86), sod(83)=sod(443)=11
2*79+prime(60)=158+281=439=prime(85), sod(79)=sod(439)=16
2*167+prime(61)=354+283=617=prime(113), sod(167)=sod(617)=14
2*139+prime(62)=278+293=571=prime(105), sod(139)=sod(571)=13
2*107+prime(63)=214+307=521=prime(98), sod(107)=sod(521)=8
2*453+prime(64)=906+311=1217=prime(199), sod(453)=sod(1217)=13
2*353+prime(65)=706+313=1019=prime(171), sod(353)=sod(1019)=11
2*7+prime(66)=14+317=331=prime(67), sod(7)=sod(331)=7
2*443+prime(67)=886+331=1217=prime(199), sod(443)=sod(1217)=11
2*491+prime(68)=982+337=1319=prime(215), sod(491)=sod(1319)=14
2*157+prime(69)=314+347=661=prime(121), sod(157)=sod(661)=13
2*47+prime(70)=94+349=443=prime(86), sod(47)=sod(443)=11
2*97+prime(71)=194+353=547=prime(101), sod(97)=sod(547)=16
2*37+prime(72)=74+359=433=prime(84), sod(37)=sod(433)=10
i=1: 2*13+prime(3)=26+5=31=prime(11), sod(13)=sod(31)=4, 31 is first term
i=2: 2*2+prime(4)=4+7=11=prime(5), sod(2)=sod(11)=2, 11 is 2nd term
base,nonn
Ulrich Krug (leuchtfeuer37(AT)gmx.de), May 29 2010
approved