editing
approved
editing
approved
From Table 1, p.2 of Roffelsen. The Yablonskii-Vorob'ev polynomials are defined by the equation Q_(n+1)*Q_(n-1) = z*(Q_n)^2 - 4*(Q_n * (Q_n)'' - ((Q_n)')^2, ), with Q_0 = 1 and Q_1 = z.
approved
editing
reviewed
approved
proposed
reviewed
editing
proposed
a[f_, n_] := Module[{t, = {{1}}, p, = 1, q, = 1, z},
t = {{1}};
p = q = 1;
t];
];
Flatten[Reverse[#][[; ; ; ; 3]]& /@ a[1, 6][[; ; , -1; ; 1; ; -3]]] (* A092766 *)
r[q_, f_, z_] := z q^2 + f (q D[q, z, z] - D[q, z]^2);
t = {{1}};
p = q = 1;
Do[{p, q} = {q, Simplify[r[q, -4]/p]}; AppendTo[t, CoefficientList[q, z]], 6];
Flatten@t (* this sequence *)
a[f_, n_] := Module[{t, p, q, z},
Do[{p, q} = {q, Simplify[r[q, 1f, z]/p]}; AppendTo[t, Reverse[CoefficientList[q, z]][[; ; ; ; 3]]], 6, n];
t
];
Flatten[a[-4, 6]] (* this sequence *)
Flatten[Reverse[#][[; ; ; ; 3]]& /@t a[1, 6]] (* A092766 *)
proposed
editing
editing
proposed
From Table 1, p.2 of Roffelsen. The Yablonskii-Vorob'ev polynomials are defined by the equation Q_(n+1)*Q_(n-1) = z*(Q_n)^2 - 4*(Q_n * (Q_n)'' - ((Q_n)')^2, with Q_0 = 1 and Q_1 = z.
are defined by the equation
Q_(n+1)*Q_(n-1) = z*(Q_n)^2 - 4*(Q_n * (Q_n)'' - ((Q_n)')^2, with Q_0 = 1 and Q_1 = z
proposed
editing