editing
approved
editing
approved
Conjecture: +(n+1)*a(n) +(-7*n+2)*a(n-1) +(11*n-13)*a(n-2) +15*(n-4)*a(n-3) +2*(-16*n+65)*a(n-4) +12*(n-5)*a(n-5)=0. - R. J. Mathar, Mar 02 2016
approved
editing
_Richard Choulet (richardchoulet(AT)yahoo.fr), _, May 03 2010
Sequence defined by the recurrence formula a(n+1)=sum(a(p)*a(n-p)+k,p=0..n)+l for n>=1, with here a(0)=1, a(1)=2, k=-2 and l=0.
1, 2, 0, -2, -12, -42, -144, -466, -1476, -4522, -13384, -37794, -99964, -237738, -455104, -366706, 2555276, 20416150, 103683976, 445363518, 1736519252, 6310980502, 21595986320, 69654711278, 210206070236, 581729708502
0,2
G.f f: f(z)=(1-sqrt(1-4*z*(a(0)-z*a(0)^2+z*a(1)+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z) (k=-2, l=0).
a(2)=2*1*2-4=0. a(3)=2*1*0-4+2^2-2=-2. a(4)=2*1*(-2)-4+2*2*0-4=-12.
l:=0: : k := -2 : m:=5:d(0):=2:d(1):=m: for n from 1 to 30 do d(n+1):=sum(d(p)*d(n-p)+k, p=0..n)+l:od :
taylor((1-sqrt(1-4*z*(d(0)-z*d(0)^2+z*m+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z), z=0, 30); seq(d(n), n=0..30);
C.f A177111.
easy,sign,new
Richard Choulet (richardchoulet(AT)yahoo.fr), May 03 2010
approved