login

Revision History for A176422

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
A symmetrical triangle sequence;q=4;c(n,q)=Product[1 - q^i, {i, 1, n}];t(n,m,q)=1 c(n, q)/(c[m, q)*c(n - m, q))-Binomial[n, m]
(history; published version)
#2 by Russ Cox at Fri Mar 30 17:34:40 EDT 2012
AUTHOR

_Roger L. Bagula (rlbagulatftn(AT)yahoo.com), _, Apr 17 2010

Discussion
Fri Mar 30
17:34
OEIS Server: https://oeis.org/edit/global/158
#1 by N. J. A. Sloane at Tue Jun 01 03:00:00 EDT 2010
NAME

A symmetrical triangle sequence;q=4;c(n,q)=Product[1 - q^i, {i, 1, n}];t(n,m,q)=1 c(n, q)/(c[m, q)*c(n - m, q))-Binomial[n, m]

DATA

1, 1, 1, 1, 4, 1, 1, 19, 19, 1, 1, 82, 352, 82, 1, 1, 337, 5788, 5788, 337, 1, 1, 1360, 93079, 376786, 93079, 1360, 1, 1, 5455, 1490833, 24208579, 24208579, 1490833, 5455, 1, 1, 21838, 23859082, 1550842030, 6221613472, 1550842030, 23859082, 21838, 1, 1

OFFSET

0,5

COMMENTS

Row sums are:

{1, 2, 6, 40, 518, 12252, 565666, 51409736, 9371059374, 3387887031700,

2463333456291194,...}.

FORMULA

q=4;

c(n,q)=Product[1 - q^i, {i, 1, n}];

t(n,m,q)=t(n,m,q)=1 c(n, q)/(c[m, q)*c(n - m, q))-Binomial[n, m]

EXAMPLE

{1},

{1, 1},

{1, 4, 1},

{1, 19, 19, 1},

{1, 82, 352, 82, 1},

{1, 337, 5788, 5788, 337, 1},

{1, 1360, 93079, 376786, 93079, 1360, 1},

{1, 5455, 1490833, 24208579, 24208579, 1490833, 5455, 1},

{1, 21838, 23859082, 1550842030, 6221613472, 1550842030, 23859082, 21838, 1},

{1, 87373, 381767554, 99277752466, 1594283908456, 1594283908456, 99277752466, 381767554, 87373, 1},

{1, 349516, 6108368761, 6354157930606, 408235958349076, 1634141006295274, 408235958349076, 6354157930606, 6108368761, 349516, 1}

MATHEMATICA

c[n_, q_] = Product[1 - q^i, {i, 1, n}];

t[n_, m_, q_] = c[n, q]/(c[m, q]*c[n - m, q]) - Binomial[n, m] + 1;

Table[Flatten[Table[Table[t[n, m, q], {m, 0, n}], {n, 0, 10}]], {q, 2, 12}]

KEYWORD

nonn,tabl,uned

AUTHOR

Roger L. Bagula (rlbagulatftn(AT)yahoo.com), Apr 17 2010

STATUS

approved