reviewed
approved
reviewed
approved
proposed
reviewed
editing
proposed
2, 7, 37, 127, 397, 3613, 18089, 162881, 1791787, 41211197, 370900973, 4821712733, 43395414737, 477349562419, 4296146062051, 227695741289567, 9335525392876531, 326743388750679161, 16663912826284638251, 583236948919962339073, 9915028131639359764313
Next 10 terms: 583236948919962339073, 9915028131639359764313,
Next 8 terms: 406516153397213750338933,24797485357230038770679749,
127+397=524=4*131 (131=nextprime(127))
approved
editing
_Zak Seidov (zakseidov(AT)yahoo.com), _, May 28 2010
a(n) = smallest prime > a(n-1) such that (a(n-1)+a(n)) is a multiple of nextprime(a(n-1)).
2, 7, 37, 127, 397, 3613, 18089, 162881, 1791787, 41211197, 370900973, 4821712733, 43395414737, 477349562419, 4296146062051, 227695741289567, 9335525392876531, 326743388750679161, 16663912826284638251
1,1
Next 10 terms: 583236948919962339073, 9915028131639359764313,
406516153397213750338933,24797485357230038770679749,
223177368215070348936118621,5579434205376758723402966617,
295710012884968212340357231241,23361091017912488774888221274279,
1518470916164311770367734382831699,56183423898079535503606172164775599.
a(1)=2; a(2)=7 because 2+7=9 is a multiple of 3=nextprime(2)
a(3)=37 because 7+37=44 is a multiple of 11=nextprime(7)
37+127=164=4*41 (41=nextprime(37))
127+397=524=4*131 (131=nextprime(127)
397+3613=4010=10*401 (401=nextprime(397))
3613+18089=21702=6*3617 (3617=nextprime(3613))
18089+162881=180970=10*18097 (18097=nextprime(18089))
162881+1791787=1954668=12*162889 (162889=nextprime(162881))
1791787+41211197=43002984=24*1791791 (1791791=nextprime(1791787)).
<<NumberTheory`NumberTheoryFunctions`; a=2; np=NextPrime[a]; s={a};
Do[Do[If[PrimeQ[p=np*k-a], AppendTo[s, p]; a=p; np=NextPrime[a]; Break[]], {k, 1000}], {30}]; s
Cf. A178468.
nonn
Zak Seidov (zakseidov(AT)yahoo.com), May 28 2010
approved