login

Revision History for A171650

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Triangle T, read by rows : T(n,k) = A007318(n,k)*A026641(n-k).
(history; published version)
#7 by Charles R Greathouse IV at Thu Sep 08 08:45:50 EDT 2022
PROG

(MAGMAMagma) [[(-1)^(n-k)*Binomial(n, k)*(&+[(-1)^j*Binomial(n-k+j, j): j in [0..n-k]]): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Apr 29 2019

Discussion
Thu Sep 08
08:45
OEIS Server: https://oeis.org/edit/global/2944
#6 by Susanna Cuyler at Mon Apr 29 20:36:30 EDT 2019
STATUS

proposed

approved

#5 by G. C. Greubel at Mon Apr 29 19:15:03 EDT 2019
STATUS

editing

proposed

#4 by G. C. Greubel at Mon Apr 29 19:11:50 EDT 2019
DATA

1, 1, 1, 4, 2, 1, 13, 12, 3, 1, 46, 52, 24, 4, 1, 166, 230, 130, 40, 5, 1, 610, 996, 690, 260, 60, 6, 1, 2269, 4270, 3486, 1610, 455, 84, 7, 1, 8518, 18152, 17080, 9296, 3220, 728, 112, 8, 1, 32206, 76662, 81684, 51240, 20916, 5796, 1092, 468, 144, 9, 1

LINKS

G. C. Greubel, <a href="/A171650/b171650.txt">Rows n = 0..100 of triangle, flattened</a>

FORMULA

T(n, k) = (-1)^(n-k)*binomial(n, k)*Sum_{j=0..n-k} (-1)^j*Binomial(n-k+j, j). - G. C. Greubel, Apr 29 2019

EXAMPLE

Triangle begins : 1 ; 1,1 ; 4,2,1 ; 13,12,3,1 ; 46,52,24,4,1 ; 166,230,130,40,5,1 ; ...

Triangle begins as

1;

1, 1;

4, 2, 1;

13, 12, 3, 1;

46, 52, 24, 4, 1;

166, 230, 130, 40, 5, 1; ...

MATHEMATICA

T[n_, k_]:= (-1)^(n-k)*Binomial[n, k]*Sum[(-1)^j*Binomial[n-k+j, j], {j, 0, n-k}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Apr 29 2019 *)

PROG

(PARI) {T(n, k) = (-1)^(n-k)*binomial(n, k)*sum(j=0, n-k, (-1)^j*binomial(n-k+j, j))}; \\ G. C. Greubel, Apr 29 2019

(MAGMA) [[(-1)^(n-k)*Binomial(n, k)*(&+[(-1)^j*Binomial(n-k+j, j): j in [0..n-k]]): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Apr 29 2019

(Sage) [[(-1)^(n-k)*binomial(n, k)*sum((-1)^j*binomial(n-k+j, j) for j in (0..n-k)) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Apr 29 2019

STATUS

approved

editing

#3 by N. J. A. Sloane at Sun Sep 08 13:31:52 EDT 2013
AUTHOR

_Philippe DELEHAM_, Deléham_, Dec 13 2009

Discussion
Sun Sep 08
13:31
OEIS Server: https://oeis.org/edit/global/1938
#2 by Russ Cox at Sat Mar 31 10:28:10 EDT 2012
AUTHOR

_Philippe DELEHAM (kolotoko(AT)wanadoo.fr), _, Dec 13 2009

Discussion
Sat Mar 31
10:28
OEIS Server: https://oeis.org/edit/global/535
#1 by N. J. A. Sloane at Tue Jun 01 03:00:00 EDT 2010
NAME

Triangle T, read by rows : T(n,k) = A007318(n,k)*A026641(n-k).

DATA

1, 1, 1, 4, 2, 1, 13, 12, 3, 1, 46, 52, 24, 4, 1, 166, 230, 130, 40, 5, 1, 610, 996, 690, 260, 60, 6, 1, 2269, 4270, 3486, 1610, 455, 84, 7, 1, 8518, 18152, 17080, 9296, 3220, 728, 112, 8, 1, 32206, 76662, 81684, 51240, 20916, 5796, 1092, 468, 9, 1

OFFSET

0,4

FORMULA

Sum_{k, 0<=k<=n} T(n,k)*x^k = A127361(n), A127328(n), A026641(n), A126568(n), A133158(n) for x = -2, -1, 0, 1, 2 respectively.

EXAMPLE

Triangle begins : 1 ; 1,1 ; 4,2,1 ; 13,12,3,1 ; 46,52,24,4,1 ; 166,230,130,40,5,1 ; ...

KEYWORD

nonn,tabl

AUTHOR

Philippe DELEHAM (kolotoko(AT)wanadoo.fr), Dec 13 2009

STATUS

approved