reviewed
approved
reviewed
approved
proposed
reviewed
editing
proposed
Limit_{n -> oo} a(n)/a(n-1) = 16.
a(n) = A115490(n+1)/3.
Limit_{n -> oo} a(n)/a(n-1) = 16.
a(n) = A115490(n+1)/3.
From _Sum_{n>=0} a(n) x^(2*n+4)/(2*n+4)! = ( sinh(x) )^4/4!. - _Robert A. Russell_, Apr 03 2013: (Start)
E.g.f.: sinh(x)^4/4!.
a(n) = Sum{n>=0, a(n) x^(2n+4)/(2n+4)!}. (End)
E.g.f.: (4/3)*exp(10*x)*sinh(6*x + log(2)). - G. C. Greubel, Oct 02 2024
(Magma) [ n le 2 select 19*n-18 else 20*Self(n-1)-64*Self(n-2): n in [1..17] ];
(SageMath)
A166984=BinaryRecurrenceSequence(20, -64, 1, 20)
[A166984(n) for n in range(31)] # G. C. Greubel, Oct 02 2024
approved
editing
editing
approved
1, 20, 336, 5440, 87296, 1397760, 22368256, 357908480, 5726601216, 91625881600, 1466015154176, 23456246661120, 375299963355136, 6004799480791040, 96076791961092096, 1537228672451215360, 24595658763514413056, 393530540233410478080, 6296488643803287126016
a(0) = 1, a(n) = 16*a(n-1) + 4^n with a(0) = 1. - Nadia Lafreniere, Aug 08 2022
proposed
editing
editing
proposed
a(0) = 1, a(n) = 16*a(n-1) + 4^n. - Nadia Lafreniere, Aug 08 2022
proposed
editing
editing
proposed