login

Revision History for A166984

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
a(n) = 20*a(n-1) - 64*a(n-2) for n > 1; a(0) = 1, a(1) = 20.
(history; published version)
#58 by Hugo Pfoertner at Thu Oct 03 06:09:54 EDT 2024
STATUS

reviewed

approved

#57 by Joerg Arndt at Thu Oct 03 01:56:37 EDT 2024
STATUS

proposed

reviewed

#56 by G. C. Greubel at Wed Oct 02 15:02:43 EDT 2024
STATUS

editing

proposed

#55 by G. C. Greubel at Wed Oct 02 14:57:51 EDT 2024
COMMENTS

Limit_{n -> oo} a(n)/a(n-1) = 16.

a(n) = A115490(n+1)/3.

FORMULA

Limit_{n -> oo} a(n)/a(n-1) = 16.

a(n) = A115490(n+1)/3.

From _Sum_{n>=0} a(n) x^(2*n+4)/(2*n+4)! = ( sinh(x) )^4/4!. - _Robert A. Russell_, Apr 03 2013: (Start)

E.g.f.: sinh(x)^4/4!.

a(n) = Sum{n>=0, a(n) x^(2n+4)/(2n+4)!}. (End)

E.g.f.: (4/3)*exp(10*x)*sinh(6*x + log(2)). - G. C. Greubel, Oct 02 2024

PROG

(Magma) [ n le 2 select 19*n-18 else 20*Self(n-1)-64*Self(n-2): n in [1..17] ];

(SageMath)

A166984=BinaryRecurrenceSequence(20, -64, 1, 20)

[A166984(n) for n in range(31)] # G. C. Greubel, Oct 02 2024

STATUS

approved

editing

Discussion
Wed Oct 02
15:02
G. C. Greubel: Corrected RAR's formula. The form a(n) = Sum_{n} a(n) * x^(2*n+4)/(2*n+4)! required investigation.
#54 by Alois P. Heinz at Mon Aug 08 18:58:20 EDT 2022
STATUS

editing

approved

#53 by Alois P. Heinz at Mon Aug 08 18:57:42 EDT 2022
DATA

1, 20, 336, 5440, 87296, 1397760, 22368256, 357908480, 5726601216, 91625881600, 1466015154176, 23456246661120, 375299963355136, 6004799480791040, 96076791961092096, 1537228672451215360, 24595658763514413056, 393530540233410478080, 6296488643803287126016

FORMULA

a(0) = 1, a(n) = 16*a(n-1) + 4^n with a(0) = 1. - Nadia Lafreniere, Aug 08 2022

STATUS

proposed

editing

#52 by Nadia Lafreniere at Mon Aug 08 18:40:24 EDT 2022
STATUS

editing

proposed

#51 by Nadia Lafreniere at Mon Aug 08 18:39:40 EDT 2022
FORMULA

a(0) = 1, a(n) = 16*a(n-1) + 4^n. - Nadia Lafreniere, Aug 08 2022

Discussion
Mon Aug 08
18:40
Nadia Lafreniere: Sorry about that. I meant a(n) = 16*a(n-1)+4^n. I made the edit.
#50 by Alois P. Heinz at Mon Aug 08 18:06:40 EDT 2022
STATUS

proposed

editing

#49 by Nadia Lafreniere at Mon Aug 08 15:25:05 EDT 2022
STATUS

editing

proposed

Discussion
Mon Aug 08
18:06
Alois P. Heinz: a(n) = 16*a(n) + 4^n ? really ?