login

Revision History for A166413

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
Number of reduced words of length n in Coxeter group on 19 generators S_i with relations (S_i)^2 = (S_i S_j)^11 = I.
(history; published version)
#19 by Alois P. Heinz at Tue Jul 23 20:29:57 EDT 2024
STATUS

proposed

approved

#18 by G. C. Greubel at Tue Jul 23 14:01:55 EDT 2024
STATUS

editing

proposed

#17 by G. C. Greubel at Tue Jul 23 14:01:51 EDT 2024
FORMULA

G.f.: (1+x)*(1-x^1211)/(1 - 18*x + 170*x^11 - 153*x^12). (End)

MATHEMATICA

With[{ap=153, bq=17}, CoefficientList[Series[(1+t)*(1-t^1211)/(1-(bq+1)*t + (ap+bq)*t^11-ap*t^12), {t, 0, 40}], t]] (* G. C. Greubel, May 12 2016; Jul 23 2024 *)

PROG

Coefficients(R!( (1+x)*(1-x^1211)/(1-18*x+170*x^11-153*x^12) )); // G. C. Greubel, Jul 23 2024

return P( (1+x)*(1-x^1211)/(1-18*x+170*x^11-153*x^12) ).list()

STATUS

proposed

editing

#16 by G. C. Greubel at Tue Jul 23 02:38:06 EDT 2024
STATUS

editing

proposed

Discussion
Tue Jul 23
04:30
Michel Marcus: magma and python does not give same terms as sequence : ... 3768826516992, 67838877305686, 1221099791499270, ...   ??
#15 by G. C. Greubel at Tue Jul 23 02:37:58 EDT 2024
LINKS

<a href="/index/Rec#order_11">Index entries for linear recurrences with constant coefficients</a>, signature (17, 17, 17, 17, 17, 17, 17, 17, 17, 17, -153).

FORMULA

From G. C. Greubel, Jul 23 2024: (Start)

a(n) = 17*Sum_{j=1..10} a(n-j) - 153*a(n-11).

G.f.: (1+x)*(1-x^12)/(1 - 18*x + 170*x^11 - 153*x^12). (End)

MATHEMATICA

CoefficientList[Series[(t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(153*t^11 - 17*t^10 - 17*t^9 - 17*t^8 - 17*t^7 - 17*t^6 - 17*t^5 - 17*t^4 - 17*t^3 - 17*t^2 - 17*t + 1), {t, 0, 50}], t] (* G. C. Greubel, May 12 2016 *)

With[{a=153, b=17}, CoefficientList[Series[(1+t)*(1-t^12)/(1-(b+1)*t + (a+b)*t^11-a*t^12), {t, 0, 40}], t]] (* G. C. Greubel, May 12 2016; Jul 23 2024 *)

PROG

(Magma)

R<x>:=PowerSeriesRing(Integers(), 30);

Coefficients(R!( (1+x)*(1-x^12)/(1-18*x+170*x^11-153*x^12) )); // G. C. Greubel, Jul 23 2024

(SageMath)

def A166413_list(prec):

P.<x> = PowerSeriesRing(ZZ, prec)

return P( (1+x)*(1-x^12)/(1-18*x+170*x^11-153*x^12) ).list()

A166413_list(30) # G. C. Greubel, Jul 23 2024

CROSSREFS
STATUS

approved

editing

#14 by Harvey P. Dale at Sat Nov 26 17:10:21 EST 2022
STATUS

editing

approved

#13 by Harvey P. Dale at Sat Nov 26 17:10:19 EST 2022
MATHEMATICA

coxG[{11, 153, -17}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Nov 26 2022 *)

STATUS

approved

editing

#12 by Ray Chandler at Thu Nov 24 09:23:14 EST 2016
STATUS

editing

approved

#11 by Ray Chandler at Thu Nov 24 09:23:11 EST 2016
LINKS

<a href="/index/Rec#order_11">Index entries for linear recurrences with constant coefficients</a>, signature (17, 17, 17, 17, 17, 17, 17, 17, 17, 17, -153).

STATUS

approved

editing

#10 by Bruno Berselli at Fri May 13 05:25:30 EDT 2016
STATUS

reviewed

approved