login

Revision History for A160913

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
a(n) = ((2^b-1)/phi(n))*Sum_{d|n} Moebius(n/d)*d^(b-1) for b = 8.
(history; published version)
#11 by Michael De Vlieger at Wed Nov 09 07:56:59 EST 2022
STATUS

reviewed

approved

#10 by Michel Marcus at Wed Nov 09 01:37:47 EST 2022
STATUS

proposed

reviewed

#9 by Amiram Eldar at Tue Nov 08 17:32:20 EST 2022
STATUS

editing

proposed

#8 by Amiram Eldar at Tue Nov 08 16:22:19 EST 2022
CROSSREFS
#7 by Amiram Eldar at Tue Nov 08 16:14:00 EST 2022
LINKS

Amiram Eldar, <a href="/A160913/b160913.txt">Table of n, a(n) for n = 1..10000</a>

#6 by Amiram Eldar at Tue Nov 08 16:13:47 EST 2022
DATA

255, 32385, 278715, 2072640, 4980405, 35396805, 35000535, 132648960, 203183235, 632511435, 496922835, 2265395520, 1333405965, 4445067945, 5443582665, 8489533440, 6539772585, 25804270845, 12663182955, 40480731840, 38255584755, 63109200045, 39465022215, 144985313280

#5 by Amiram Eldar at Tue Nov 08 16:12:48 EST 2022
NAME

a(n) = ((2^b-1)/phi(n))*Sum_{d|n} Moebius(n/d)*d^(b-1) for b = 8.

REFERENCES

J. H. Kwak and J. Lee, Enumeration of graph coverings, surface branched coverings and related group theory, in Combinatorial and Computational Mathematics (Pohang, 2000), ed. S. Hong et al., World Scientific, Singapore 2001, pp. 97-161. See p. 134.

LINKS

Jin Ho Kwak and Jaeun Lee, <a href="https://doi.org/10.1142/9789812799890_0005">Enumeration of graph coverings, surface branched coverings and related group theory</a>, in Combinatorial and Computational Mathematics (Pohang, 2000), ed. S. Hong et al., World Scientific, Singapore 2001, pp. 97-161. See p. 134.

FORMULA

From Amiram Eldar, Nov 08 2022: (Start)

Sum_{k=1..n} a(k) ~ c * n^7, where c = (255/7) * Product_{p prime} (1 + (p^6-1)/((p-1)*p^7)) = 70.419647503... .

Sum_{k>=1} 1/a(k) = (zeta(6)*zeta(7)/255) * Product_{p prime} (1 - 2/p^7 + 1/p^13) = 0.003956793297... . (End)

MATHEMATICA

f[p_, e_] := p^(6*e - 6) * (p^7-1) / (p-1); a[1] = 255; a[n_] := 255 * Times @@ f @@@ FactorInteger[n]; Array[a, 20] (* Amiram Eldar, Nov 08 2022 *)

PROG

(PARI) a(n) = {my(f = factor(n)); 255 * prod(i = 1, #f~, (f[i, 1]^7 - 1)*f[i, 1]^(6*f[i, 2] - 6)/(f[i, 1] - 1)); } \\ Amiram Eldar, Nov 08 2022

CROSSREFS
STATUS

approved

editing

#4 by R. J. Mathar at Tue Mar 15 06:47:40 EDT 2016
STATUS

editing

approved

#3 by R. J. Mathar at Tue Mar 15 06:47:16 EDT 2016
FORMULA

a(n) = 255*A160897(n). - R. J. Mathar, Mar 15 2016

STATUS

approved

editing

#2 by Russ Cox at Fri Mar 30 16:51:24 EDT 2012
AUTHOR

_N. J. A. Sloane (njas(AT)research.att.com), _, Nov 19 2009

Discussion
Fri Mar 30
16:51
OEIS Server: https://oeis.org/edit/global/110