reviewed
approved
reviewed
approved
proposed
reviewed
editing
proposed
Amiram Eldar, <a href="/A160913/b160913.txt">Table of n, a(n) for n = 1..10000</a>
255, 32385, 278715, 2072640, 4980405, 35396805, 35000535, 132648960, 203183235, 632511435, 496922835, 2265395520, 1333405965, 4445067945, 5443582665, 8489533440, 6539772585, 25804270845, 12663182955, 40480731840, 38255584755, 63109200045, 39465022215, 144985313280
a(n) = ((2^b-1)/phi(n))*Sum_{d|n} Moebius(n/d)*d^(b-1) for b = 8.
J. H. Kwak and J. Lee, Enumeration of graph coverings, surface branched coverings and related group theory, in Combinatorial and Computational Mathematics (Pohang, 2000), ed. S. Hong et al., World Scientific, Singapore 2001, pp. 97-161. See p. 134.
Jin Ho Kwak and Jaeun Lee, <a href="https://doi.org/10.1142/9789812799890_0005">Enumeration of graph coverings, surface branched coverings and related group theory</a>, in Combinatorial and Computational Mathematics (Pohang, 2000), ed. S. Hong et al., World Scientific, Singapore 2001, pp. 97-161. See p. 134.
From Amiram Eldar, Nov 08 2022: (Start)
Sum_{k=1..n} a(k) ~ c * n^7, where c = (255/7) * Product_{p prime} (1 + (p^6-1)/((p-1)*p^7)) = 70.419647503... .
Sum_{k>=1} 1/a(k) = (zeta(6)*zeta(7)/255) * Product_{p prime} (1 - 2/p^7 + 1/p^13) = 0.003956793297... . (End)
f[p_, e_] := p^(6*e - 6) * (p^7-1) / (p-1); a[1] = 255; a[n_] := 255 * Times @@ f @@@ FactorInteger[n]; Array[a, 20] (* Amiram Eldar, Nov 08 2022 *)
(PARI) a(n) = {my(f = factor(n)); 255 * prod(i = 1, #f~, (f[i, 1]^7 - 1)*f[i, 1]^(6*f[i, 2] - 6)/(f[i, 1] - 1)); } \\ Amiram Eldar, Nov 08 2022
approved
editing
editing
approved
a(n) = 255*A160897(n). - R. J. Mathar, Mar 15 2016
approved
editing
_N. J. A. Sloane (njas(AT)research.att.com), _, Nov 19 2009