(MAGMAMagma) [Numerator((&+[(-1)^k*Factorial(n)*(1/9)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jun 09 2018
(MAGMAMagma) [Numerator((&+[(-1)^k*Factorial(n)*(1/9)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jun 09 2018
reviewed
approved
proposed
reviewed
editing
proposed
a(n) = 189^n * Hermite(n,1/18).
E.g.f.: exp(2*x-32481*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(1/9)^(n-2k2*k)/(k!*(n-2k2*k)!)). (End)
approved
editing
proposed
approved
editing
proposed
G. C. Greubel, <a href="/A159545/b159545.txt">Table of n, a(n) for n = 0..450</a>
From G. C. Greubel, Jun 09 2018: (Start)
a(n) = 18^n * Hermite(n,1/18).
E.g.f.: exp(2*x-324*x^2).
a(n) = Sum_{k=0..floor(n/2)} (-1)^k*n!*(1/9)^(n-2k)/(k!*(n-2k)!). (End)
(MAGMA) [Numerator((&+[(-1)^k*Factorial(n)*(1/9)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jun 09 2018
approved
editing
editing
approved
(PARI) a(n)=numerator(polhermite(n, 1/18)) \\ Charles R Greathouse IV, Jan 29 2016
approved
editing