(MAGMAMagma) [[n*Binomial(n-k-1, k-1)/k: k in [1..Floor(n/2)]]: n in [2..20]]; // G. C. Greubel, Apr 25 2019
(MAGMAMagma) [[n*Binomial(n-k-1, k-1)/k: k in [1..Floor(n/2)]]: n in [2..20]]; // G. C. Greubel, Apr 25 2019
proposed
approved
editing
proposed
2, 3, 4, 2, 5, 5, 6, 9, 2, 7, 14, 7, 8, 20, 16, 2, 9, 27, 30, 9, 10, 35, 50, 25, 2, 11, 44, 77, 55, 11, 12, 54, 112, 105, 36, 2, 13, 65, 156, 182, 91, 13, 14, 77, 210, 294, 196, 49, 2, 15, 90, 275, 450, 378, 140, 15, 16, 104, 352, 660, 672, 336, 64, 2, 17, 119, 442, 935, 1122, 714, 204, 17
G. C. Greubel, <a href="/A157000/b157000.txt">Rows n = 2..100 of triangle, flattened</a>
2;
3;
4, 2;
5, 5;
6, 9, 2;
7, 14, 7;
8, 20, 16, 2;
9, 27, 30, 9;
10, 35, 50, 25, 2;
11, 44, 77, 55, 11;
12, 54, 112, 105, 36, 2;
gTable[n_, k_] := (n/k)*Binomial[n - k - 1, k - 1]; , {n, 2, 20}, {k, 1, Floor[n/2]}]//Flatten (* modified by _G. C. Greubel_, Apr 25 2019 *)
Table[Table[g[n, k + 1], {k, 0, Floor[n/2] - 1}], {n, 12}];
Flatten[%]
(MAGMA) [[n*Binomial(n-k-1, k-1)/k: k in [1..Floor(n/2)]]: n in [2..20]]; // G. C. Greubel, Apr 25 2019
(Sage) [[n*binomial(n-k-1, k-1)/k for k in (1..floor(n/2))] for n in (2..20)] # G. C. Greubel, Apr 25 2019
approved
editing
proposed
approved
editing
proposed
T(n,k) is the number of ways to select k knights from a round table of n knights, no two adjacent. - Bert Seghers, Mar 02 2014
T(n,k) = binomial(n-k,k) + binomial(n-k-1,k-1). - Bert Seghers, Mar 02 2014
proposed
editing
editing
proposed
T(n,k) = binomial(n-k,k) + binomial(n-k-1,k-1). - _Bert Seghers_, Mar 2014
(PARI) a(n, k)=n*binomial(n-k-1, k-1)/k ; \\ Charles R Greathouse IV, Jul 10 2011
proposed
editing
editing
proposed