login

Revision History for A156833

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
#9 by Joerg Arndt at Sun Oct 15 11:20:11 EDT 2023
STATUS

reviewed

approved

#8 by Michel Marcus at Sun Oct 15 11:01:03 EDT 2023
STATUS

proposed

reviewed

#7 by Jean-François Alcover at Sun Oct 15 08:49:40 EDT 2023
STATUS

editing

proposed

#6 by Jean-François Alcover at Sun Oct 15 08:49:28 EDT 2023
MATHEMATICA

A054525[n_, k_] := If[Divisible[n, k], MoebiusMu[n/k], 0];

A156348[n_, k_] := Which[k < 1 || k > n, 0, Mod[n, k] == 0, Binomial[n/k - 2 + k, k - 1], True, 0];

T[n_, k_] := Sum[A054525[n, j]*A156348[j, k], {j, k, n}];

a[n_] := Sum[T[n, k]*k, {k, 1, n}];

Table[a[n], {n, 1, 51}] (* Jean-François Alcover, Oct 15 2023 *)

STATUS

approved

editing

#5 by Joerg Arndt at Sun Mar 03 13:48:57 EST 2013
STATUS

proposed

approved

#4 by R. J. Mathar at Sun Mar 03 12:41:26 EST 2013
STATUS

editing

proposed

#3 by R. J. Mathar at Sun Mar 03 12:41:08 EST 2013
DATA

1, 2, 3, 6, 5, 16, 7, 24, 24, 38, 11, 103, 13, 68, 127, 144, 17, 261, 19, 404, 291, 152, 23, 994, 370, 206, 540, 1093, 29, 2195, 31, 1584, 943, 338, 2543, 4808, 37, 416, 1479, 7371, 41, 7929, 43, 4691, 8976, 596, 47, 18876, 6510, 11035, 3091

MAPLE

A156833T := proc(n, k)

add(A054525(n, j)*A156348(j, k), j=k..n) ;

end proc:

A156833 := proc(n)

add(A156833T(n, k)*k, k=1..n) ;

end proc: # R. J. Mathar, Mar 03 2013

EXTENSIONS

Extended beyond a(14) by R. J. Mathar, Mar 03 2013

STATUS

approved

editing

#2 by Russ Cox at Fri Mar 30 17:25:34 EDT 2012
AUTHOR

_Gary W. Adamson (qntmpkt(AT)yahoo.com), _, Feb 16 2009

Discussion
Fri Mar 30
17:25
OEIS Server: https://oeis.org/edit/global/135
#1 by N. J. A. Sloane at Fri Feb 27 03:00:00 EST 2009
NAME

A054525 * A156348 * [1,2,3,...]

DATA

1, 2, 3, 6, 5, 16, 7, 24, 24, 38, 11, 103, 13, 68

OFFSET

1,2

COMMENTS

Conjecture: for n>1, a(n) = n iff n is prime.

Companion to A156834: (1, 2, 3, 5, 5, 12, 7, 17, 19,...).

FORMULA

A054525 * A156348 * [1,2,3,...]

EXAMPLE

a(4) = 6 since first 4 terms of A156348 * [1, 2, 3, 4,...] = (1, 3, 4, 9);

Then (1, 3, 4, 9) dot (0, -1, 0, 1) = (0 - 3 + 0 + 9) = 6. Row 4 of A054525 = (0, -1, 0, 1).

CROSSREFS
KEYWORD

nonn,new

AUTHOR

Gary W. Adamson (qntmpkt(AT)yahoo.com), Feb 16 2009

STATUS

approved