proposed
approved
proposed
approved
editing
proposed
editing
proposed
editing
proposed
Row sums: (2^n-1)(n+1) = A058877(n). [_- _R. J. Mathar_, Jan 22 2009]
T(2n, n) = 3*n*2^(n-1) = 3*A001787(n). [_- _Philippe Deléham_, Apr 20 2009]
T(n, k) = (2*n-k) * 2^(k-1) for 0 <= k <= n.
T(n, k) = T(n, k-1) + T(n-1, k-1) for k>=1, T(n,0) = n. - Alois P. Heinz, Sep 12 2022
From G. C. Greubel, Sep 27 2022: (Start)
T(2*n-1, n-1) = A053220(n).
T(2*n+1, n-1) = 3*A001792(n).
T(n, n-1) = A001792(n).
T(n, n) = A001787(n). (End)
1, 1;
2, 3, 4;
3, 5, 8, 12;
4, 7, 12, 20, 32;
t[0, k_] := k; t[n_, k_] := t[n, k] = t[n - 1, k] + t[n - 1, k + 1]; Table[t[n - k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* _Jean-François Alcover_, Sep 11 2016 *)
Table[t[n-k, k], {n, 0, 10}, {k, n, 0, -1}]//Flatten (* Jean-François Alcover, Sep 11 2016 *)
(Magma) [2^k*(n-k/2): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 27 2022
(SageMath) flatten([[2^(k-1)*(2*n-k) for k in range(n+1)] for n in range(12)]) # G. C. Greubel, Sep 27 2022
approved
editing
editing
approved
Row sums: (2^n-1)(n+1) = A058877(n). [R. J. Mathar, Jan 22 2009]
approved
editing