editing
approved
editing
approved
Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, -1, -1), (-1, -1, 1), (0, 0, 1), (0, 1, 0), (1, 0, 0)}.
approved
editing
_Manuel Kauers (manuel(AT)kauers.de), _, Nov 18 2008
Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, -1, -1), (-1, -1, 1), (0, 0, 1), (0, 1, 0), (1, 0, 0)}
1, 3, 9, 29, 105, 401, 1565, 6235, 25435, 105201, 440165, 1861067, 7942453, 34118021, 147539839, 641724317, 2805400805, 12314901173, 54284939599, 240146460337, 1065873647065, 4744406887317, 21177750028993, 94762922039031, 425024963073671, 1910295056145189, 8603324765426951, 38816474157873677
0,2
A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, <a href="http://arxiv.org/abs/0811.2899">ArXiv 0811.2899</a>.
aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, j, k, -1 + n] + aux[i, -1 + j, k, -1 + n] + aux[i, j, -1 + k, -1 + n] + aux[1 + i, 1 + j, -1 + k, -1 + n] + aux[1 + i, 1 + j, 1 + k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]
nonn,walk
Manuel Kauers (manuel(AT)kauers.de), Nov 18 2008
approved