editing
approved
editing
approved
Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, -1, 1), (-1, 0, 0), (0, 1, 0), (1, -1, 1), (1, 0, -1)}.
approved
editing
_Manuel Kauers (manuel(AT)kauers.de), _, Nov 18 2008
Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, -1, 1), (-1, 0, 0), (0, 1, 0), (1, -1, 1), (1, 0, -1)}
1, 1, 2, 5, 16, 52, 183, 664, 2449, 9362, 36633, 145270, 586439, 2398743, 9905045, 41348528, 174110004, 738361192, 3154440182, 13559465468, 58601967026, 254620276210, 1111404780914, 4871741807378, 21440930894794, 94702771111481, 419700986590893, 1865899431263205, 8319362447227408
0,3
A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, <a href="http://arxiv.org/abs/0811.2899">ArXiv 0811.2899</a>.
aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, j, 1 + k, -1 + n] + aux[-1 + i, 1 + j, -1 + k, -1 + n] + aux[i, -1 + j, k, -1 + n] + aux[1 + i, j, k, -1 + n] + aux[1 + i, 1 + j, -1 + k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]
nonn,walk
Manuel Kauers (manuel(AT)kauers.de), Nov 18 2008
approved