proposed
approved
proposed
approved
editing
proposed
Triangle T(n,k) = n*binomial(n - 1, k) - (-1)^(n - k)*binomial(n, k), T(0,0) = 1, read by rows, 0 <= k <= n.
Row sums are -1, 1, 4, 12, 32, 80, 192, 448, 1024, 2304, 5120,.. see A001787.
Sum_{k=0..n} T(n,k) = A001787(n), n >= 1.
(Maxima) create_list(n*binomial(n - 1, k) - (-1)^(n - k)*binomial(n, k), n , 0, 15, k, 0, n); /* Franck Maminirina Ramaharo, Jan 25 2019 */
Triangle T(n,k) = n*binomial(n - 1, k) - (-1)^(n - k)*binomial(n, k), read by rows, 0 <= k <= n.
T(n,k) = [x^k] [ (n*(x + 1)^(n - 1) - (x - 1)^n]).
Triangle begins:
-1;
2, -1;
1, 4, -1;
4, 3, 6, -1;
3, 16, 6, 8, -1;
6, 15, 40, 10, 10, -1;
5, 36, 45, 80, 15, 12, -1;
8, 35, 126, 105, 140, 21, 14, -1;
7, 64, 140, 336, 210, 224, 28, 16, -1;
10, 63, 288, 420, 756, 378, 336, 36, 18, -1;
9, 100, 315, 960, 1050, 1512, 630, 480, 45, 20, -1;
...
Clear[p, x, n]; p[x_, n_] = -(x - 1)^n + n*(x + 1)^(n - 1); Table[ExpandAll[p[x, n]], {n, 0, 10}]; Table[CoefficientList[p[x, n], x], {n, 0, 10}]; Flatten[%]
p[x_, n_] = -(x - 1)^n + n*(x + 1)^(n - 1);
Table[CoefficientList[p[x, n], x], {n, 0, 10}] // Flatten
sign,easy,tabl
approved
editing
proposed
approved
editing
proposed
A triangle of coefficients for polynomials: p(x,n)=-(x - 1)^n + n*(x + 1)^(n - 1).
Triangle T(n,k) = n*binomial(n-1,k)-(-1)^(n-k)*binomial(n,k), read by rows, 0<=k<=n.
1,0,2
Row sums are: -1, 1, 4, 12, 32, 80, 192, 448, 1024, 2304, 5120,.. see A001787.
{-1, 1, 4, 12, 32, 80, 192, 448, 1024, 2304, 5120}.
p(x,n)=-(x - 1)^n + n*(x + 1)^(n - 1); t(n,m)=coefficients(p(x,n)).
T(n,k) = [x^k] [ n*(x+1)^(n-1) - (x-1)^n].
{-1},
-1;
{2, -1},;
{1, 4, -1},;
{4, 3, 6, -1},;
{3, 16, 6, 8, -1},;
{6, 15, 40, 10, 10, -1},;
{5, 36, 45, 80, 15, 12, -1},;
{8, 35, 126, 105, 140, 21, 14, -1},;
{7, 64, 140, 336, 210, 224, 28, 16, -1},;
{10, 63, 288, 420, 756, 378, 336, 36, 18, -1},;
{9, 100, 315, 960, 1050, 1512, 630, 480, 45, 20, -1};
sign,unedtabl
approved
editing
_Roger L. Bagula _ and _Gary W. Adamson (rlbagulatftn(AT)yahoo.com), _, Oct 01 2008
A triangle of coefficients for polynomials: p(x,n)=-(x - 1)^n + n*(x + 1)^(n - 1).
-1, 2, -1, 1, 4, -1, 4, 3, 6, -1, 3, 16, 6, 8, -1, 6, 15, 40, 10, 10, -1, 5, 36, 45, 80, 15, 12, -1, 8, 35, 126, 105, 140, 21, 14, -1, 7, 64, 140, 336, 210, 224, 28, 16, -1, 10, 63, 288, 420, 756, 378, 336, 36, 18, -1, 9, 100, 315, 960, 1050, 1512, 630, 480, 45, 20, -1
1,2
Row sums are:
{-1, 1, 4, 12, 32, 80, 192, 448, 1024, 2304, 5120}.
p(x,n)=-(x - 1)^n + n*(x + 1)^(n - 1); t(n,m)=coefficients(p(x,n)).
{-1},
{2, -1},
{1, 4, -1},
{4, 3, 6, -1},
{3, 16, 6, 8, -1},
{6, 15, 40, 10, 10, -1},
{5, 36, 45, 80, 15, 12, -1},
{8, 35, 126, 105, 140, 21, 14, -1},
{7, 64, 140, 336, 210, 224, 28, 16, -1},
{10, 63, 288, 420, 756, 378, 336, 36, 18, -1},
{9, 100, 315, 960, 1050, 1512, 630, 480, 45, 20, -1}
Clear[p, x, n]; p[x_, n_] = -(x - 1)^n + n*(x + 1)^(n - 1); Table[ExpandAll[p[x, n]], {n, 0, 10}]; Table[CoefficientList[p[x, n], x], {n, 0, 10}]; Flatten[%]
sign,uned
Roger L. Bagula and Gary W. Adamson (rlbagulatftn(AT)yahoo.com), Oct 01 2008
approved