_Roger L. Bagula _ and _Gary W. Adamson (rlbagulatftn(AT)yahoo.com), _, Sep 25 2008
_Roger L. Bagula _ and _Gary W. Adamson (rlbagulatftn(AT)yahoo.com), _, Sep 25 2008
nonn,uned,newsign
A determinant sequence: M={{a(-1 + n), a(-2 + n), a(-3 + n), a(-4 + n)}, {a(-2 + n), a(-3 + n), a(-4 + n), a(-5 + n)}, {a(-3 + n), a(-4 + n), a(-5 + n), a(-6 + n)}, {a(-4 + n), a(-5 + n), a(-6 + n), a(-7 + n)}}; a(n)=Det[M].
1, 2, 3, 5, 7, 11, 13, -2, 38, 2728, -443641, 1935029933, -1006469613597229, 314740206896238505761377, -4106778990409111362977439949403921647, -99836159842345073697494052403203681150224535412233647440794
1,2
M={{a(-1 + n), a(-2 + n), a(-3 + n), a(-4 + n)}, {a(-2 + n), a(-3 + n), a(-4 + n), a(-5 + n)}, {a(-3 + n), a(-4 + n), a(-5 + n), a(-6 + n)}, {a(-4 + n), a(-5 + n), a(-6 + n), a(-7 + n)}}; a(n)=Det[M].
Clear[a, n, m, k]; M = Table[Table[a[n - m - k - 1], {m, 0, 3}], {k, 0, 3}]; b = Det[M]; Table[a[i] = If[i == 0, 1, Prime[i]], {i, 0, 6}]; a[n_] := a[n] = b; Table[a[n], {n, 0, 15}]
nonn,uned
Roger L. Bagula and Gary W. Adamson (rlbagulatftn(AT)yahoo.com), Sep 25 2008
approved