login

Revision History for A142460

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
Triangle read by rows: T(n,k) (1<=k<=n) given by T(n, 1) = T(n,n) = 1, otherwise T(n, k) = (m*n-m*k+1)*T(n-1,k-1) + (m*k-m+1)*T(n-1,k), where m = 5.
(history; published version)
#20 by Joerg Arndt at Tue Mar 15 03:03:38 EDT 2022
STATUS

reviewed

approved

#19 by Michel Marcus at Tue Mar 15 00:10:52 EDT 2022
STATUS

proposed

reviewed

#18 by Jon E. Schoenfield at Mon Mar 14 23:33:28 EDT 2022
STATUS

editing

proposed

#17 by Jon E. Schoenfield at Mon Mar 14 23:33:25 EDT 2022
COMMENTS

One of a family of triangles. For m = ...,-2,-1,0,1,2,3,4,5, ... we get ..., A225372, A144431, A007318, A008292, A060187, A142458, A142459, A142560, ...

STATUS

proposed

editing

#16 by G. C. Greubel at Mon Mar 14 23:17:37 EDT 2022
STATUS

editing

proposed

#15 by G. C. Greubel at Mon Mar 14 23:17:28 EDT 2022
NAME

Triangle read by rows: T(n,k) (1<=k<=n) given by T(n, 1) = T(n,n) = 1, otherwise T(n, k) = (m*n-m*k+1)*T(n-1,k-1) + (m*k-m+1)*T(n-1,k), where m = 5.

DATA

1, 1, 1, 1, 12, 1, 1, 83, 83, 1, 1, 514, 1826, 514, 1, 1, 3105, 28310, 28310, 3105, 1, 1, 18656, 376615, 905920, 376615, 18656, 1, 1, 111967, 4627821, 22403635, 22403635, 4627821, 111967, 1, 1, 671838, 54377008, 478781506, 940952670, 478781506, 54377008, 671838, 1

COMMENTS

Row sums are A047055.

LINKS

G. C. Greubel, <a href="/A142460/b142460.txt">Rows n = 1..50 of the triangle, flattened</a>

FORMULA

m=5; tT(n, k, m) = (m*n - m*k + 1)t*T(n - 1, k - 1, m) + (m*k - (m-1))t*T(n - 1, k, m), with T(t,1,m) = T(n,n,m) = 1, and m = 5.

Sum_{k=1..n} T(n, k, 5) = A047055(n-1).

EXAMPLE

{1},

Triangle begins as:

1;

{ 1, 1},;

{ 1, 12, 1},;

{ 1, 83, 83, 1},;

{ 1, 514, 1826, 514, 1},;

{ 1, 3105, 28310, 28310, 3105, 1},;

{ 1, 18656, 376615, 905920, 376615, 18656, 1},;

{ 1, 111967, 4627821, 22403635, 22403635, 4627821, 111967, 1},;

{ 1, 671838, 54377008, 478781506, 940952670, 478781506, 54377008, 671838, 1},;

{1, 4031069, 622333256, 9346191344, 32208325226, 32208325226, 9346191344, 622333256, 4031069, 1}

MATHEMATICA

T[n_, k_, m=5; ( Pascal level_]: k=N-1) A T[n_, 1, k, m] := If[k==1; A[n_, || k==n_] := , 1; A[n_, k_] := , (m*n - m*k + 1)A*T[n - 1, k - 1, m] + (m*k - (m - +1))A*T[n - 1, k]; a = Table[A[n, k, m], {n, 10}, {k, n} ]; Flatten[a]

Table[T[n, k, 5], {n, 1, 10}, {k, 1, n}]//Flatten (* modified by G. C. Greubel, Mar 14 2022 *)

PROG

(Sage)

def T(n, k, m): # A142460

if (k==1 or k==n): return 1

else: return (m*(n-k)+1)*T(n-1, k-1, m) + (m*k-m+1)*T(n-1, k, m)

flatten([[T(n, k, 5) for k in (1..n)] for n in (1..10)]) # G. C. Greubel, Mar 14 2022

CROSSREFS

Cf. A225372, (m=-2), A144431, (m=-1), A007318, (m=0), A008292, (m=1), A060187, (m=2), A142458, (m=3), A142459 (m=4), this sequence (m=5), A142561 (m=6), A142562 (m=7), A167884 (m=8), A257608 (m=9).

Cf. A047055 (row sums).

STATUS

approved

editing

#14 by R. J. Mathar at Wed Aug 12 05:29:10 EDT 2015
STATUS

editing

approved

#13 by R. J. Mathar at Wed Aug 12 05:29:03 EDT 2015
COMMENTS

Row sums are {1, 2, 14, 168, 2856, 62832, 1696464, 54286848, 2008613376, 84361761792, ...}.

Row sums are A047055.

STATUS

approved

editing

#12 by R. J. Mathar at Wed Aug 12 05:13:50 EDT 2015
STATUS

editing

approved

#11 by R. J. Mathar at Wed Aug 12 05:13:43 EDT 2015
KEYWORD

nonn,tabl,changedeasy