login

Revision History for A139414

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
a(x) = if one of {4x^2 - 146x + 1373, 4x^2 - 144x + 1459, 4x^2 - 142x + 1301, 4x^2 - 140x + 1877} is prime, then pick that prime in sequence.
(history; published version)
#7 by M. F. Hasler at Sun Jun 02 19:47:14 EDT 2013
STATUS

editing

approved

#6 by M. F. Hasler at Sun Jun 02 19:46:28 EDT 2013
EXAMPLE

The initial terms are {1, 1373}, {2, 1319}, {3, 1033}, {4, 1493}, {5, 853}, {6, 839}, {7, 593}, {8, 1093}, {9, 461}, {10, 487}, . . . , {73, 11597}, {74, 12263}, {75, 12697}, {76, 13877}, {77, 13381}, {78, 14087}, {79, 14561}, {80, 15541}, {81, 15791}, {82, 16553}

EXTENSIONS

Clearified Clarified the definition of the sequence and added a PARI program. _Harry J. Smith, _, with help from Maximilian _M. F. Hasler, _, Jan 31 2009

STATUS

approved

editing

#5 by Russ Cox at Fri Mar 30 17:34:26 EDT 2012
AUTHOR

_Roger L. Bagula (rlbagulatftn(AT)yahoo.com), _, Jun 09 2008

Discussion
Fri Mar 30
17:34
OEIS Server: https://oeis.org/edit/global/158
#4 by Russ Cox at Fri Mar 30 17:24:41 EDT 2012
COMMENTS

The polynomials are tested in a cycle beginning with t[1 + mod [x,4]], i.e. when x==0 mod 4, they are tested in order t1,t2,t3,t4; when x==1 mod 4, they are tested in the order t2,t3,t4,t1, etc. If none of the polynomials are prime, no value is given. [From _Harry J. Smith (hjsmithh(AT)sbcglobal.net), _, Jan 28 2009, Jan 31 2009]

Discussion
Fri Mar 30
17:24
OEIS Server: https://oeis.org/edit/global/133
#3 by N. J. A. Sloane at Thu Nov 11 07:34:06 EST 2010
LINKS

Harry J. Smith, <a href="/A139414/a139414.txt">Comments on this sequence</a>

KEYWORD

nonn,new

nonn

#2 by N. J. A. Sloane at Fri Feb 27 03:00:00 EST 2009
NAME

a(Xx) = if one of {4x^2 - 146x + 1373, 4x^2 - 144x + 1459, 4x^2 - 142x + 1301, 4x^2 - 140x + 1877} is prime, then pick that prime in sequence.

COMMENTS

What is more than one is prime? What if The polynomials are tested in a cycle beginning with t[1 + mod [x,4]], i.e. when x==0 mod 4, they are tested in order t1,t2,t3,t4; when x==1 mod 4, they are tested in the order t2,t3,t4,t1, etc. If none of the four is polynomials are prime? - njas, Jun 09 2008, no value is given. [From Harry J. Smith (hjsmithh(AT)sbcglobal.net), Jan 28 2009, Jan 31 2009]

LINKS

Harry J. Smith, <a href="a139414.txt">Comments on this sequence</a>

EXAMPLE

The initial terms are: {1, 1373}, {2, 1319}, {3, 1033}, {4, 1493}, {5, 853}, {6, 839}, {7, 593}, {8, 1093}, {9, 461}, {10, 487}, . . . {73, 11597}, {74, 12263}, {75, 12697}, {76, 13877}, {77, 13381}, {78, 14087}, {79, 14561}, {80, 15541}, {81, 15791}, {82, 16553}

{0, 1373}, {1, 1319}, {2, 1033}, {3, 1493}, {4, 853}, {5, 839}, {6, 593}, {7,

1093}, {8, 461}, {9, 487}, {10, 281}, {11, 821}, {12, 197}, {13, 263}, {14,

97}, {15, 677}, {16, 61}, {17, 167}, {18, 41}, {19, 661}, {20, 53}, {21,

199}, {22, 113}, {23, 773}, {24, 173}, {25, 359}, {26, 313}, {27, 1013}, {28,

421}, {29, 647}, {30, 641}, {31, 1381}, {32, 797}, {33, 1063}, {34, 1097},

{35, 1877}, {36, 1301}, {37, 1607}, {38, 2333}, {39, 1847}, {40, 1933}, {41,

2203}, {42, 2393}, {43, 3253}, {44, 2693}, {45, 3079}, {46, 3121}, {47,

4133}, {48, 3581}, {49, 4007}, {50, 4201}, {51, 4519}, {52, 4597}, {53,

5011}, {54, 5297}, {55, 6277}, {56, 5741}, {57, 6247}, {58, 6521}, {59,

7541}, {60, 7013}, {61, 7559}, {62, 7873}, {63, 8933}, {64, 8627}, {65,

8999}, {66, 10061}, {67, 10453}, {68, 9941}, {69, 10567}, {70, 11677}, {71,

12101}, {72, 11597}, {73, 12263}, {74, 12697}, {75, 13877}, {76, 13381}, {77,

14087}, {78, 14561},

MATHEMATICA

a = {4x^2 - 146x + 1373, 4x^2 - 144x + 1459, 4x^2 - 142x + 1301, 4x^2 - 140x + 1877}; (* functional "if" ladder to switch polynomials*) g[x_] := If[PrimeQ[a[[1 + Mod[x, 4]]]], a[[1 + Mod[x, 4]]], If[PrimeQ[a[[1 + Mod[x + 1, 4]]]], a[[1 + Mod[x + 1, 4]]], If[PrimeQ[a[[1 + Mod[x + 2, 4]]]], a[[1 + Mod[x + 2, 4]]], If[PrimeQ[a[[1 + Mod[x + 3, 4]]]], a[[1 + Mod[x + 3, 4]]], a[[1 + Mod[x, 4]]]]]]]; Flatten[Table[If[PrimeQ[g[x]], g[x], {}], {x, 0, 500}]] Length[%] Sort[Table[If[PrimeQ[g[x]], {x, g[x]}, {}], {x, 0, 500 }]];

PROG

(PARI) {n=0; for( x=0, 12022, t=[4*x^2-146*x+1373, 4*x^2-144*x+1459, 4*x^2-142*x+1301, 4*x^2-140*x+1877]; for(i=0, 3, if( isprime( p=t[ (x+i)%4+1 ]), print(n++, " "p); write("b139414.txt", n, " "p); break)))}

CROSSREFS

Cf. A155814.

KEYWORD

nonn,obsc,new

EXTENSIONS

Edited by njas, Jun 09 2008Clearified the definition of the sequence and added a PARI program. Harry J. Smith, with help from Maximilian Hasler, Jan 31 2009

#1 by N. J. A. Sloane at Sun Jun 29 03:00:00 EDT 2008
NAME

a(X) = if one of {4x^2 - 146x + 1373, 4x^2 - 144x + 1459, 4x^2 - 142x + 1301, 4x^2 - 140x + 1877} is prime, then pick that prime in sequence.

DATA

1373, 1319, 1033, 1493, 853, 839, 593, 1093, 461, 487, 281, 821, 197, 263, 97, 677, 61, 167, 41, 661, 53, 199, 113, 773, 173, 359, 313, 1013, 421, 647, 641, 1381, 797, 1063, 1097, 1877, 1301, 1607, 2333, 1847, 1933, 2203, 2393, 3253, 2693, 3079, 3121, 4133

OFFSET

1,1

COMMENTS

What is more than one is prime? What if none of the four is prime? - njas, Jun 09 2008

Based on correspondence with Aldrich Stevens.

EXAMPLE

The initial terms are:

{0, 1373}, {1, 1319}, {2, 1033}, {3, 1493}, {4, 853}, {5, 839}, {6, 593}, {7,

1093}, {8, 461}, {9, 487}, {10, 281}, {11, 821}, {12, 197}, {13, 263}, {14,

97}, {15, 677}, {16, 61}, {17, 167}, {18, 41}, {19, 661}, {20, 53}, {21,

199}, {22, 113}, {23, 773}, {24, 173}, {25, 359}, {26, 313}, {27, 1013}, {28,

421}, {29, 647}, {30, 641}, {31, 1381}, {32, 797}, {33, 1063}, {34, 1097},

{35, 1877}, {36, 1301}, {37, 1607}, {38, 2333}, {39, 1847}, {40, 1933}, {41,

2203}, {42, 2393}, {43, 3253}, {44, 2693}, {45, 3079}, {46, 3121}, {47,

4133}, {48, 3581}, {49, 4007}, {50, 4201}, {51, 4519}, {52, 4597}, {53,

5011}, {54, 5297}, {55, 6277}, {56, 5741}, {57, 6247}, {58, 6521}, {59,

7541}, {60, 7013}, {61, 7559}, {62, 7873}, {63, 8933}, {64, 8627}, {65,

8999}, {66, 10061}, {67, 10453}, {68, 9941}, {69, 10567}, {70, 11677}, {71,

12101}, {72, 11597}, {73, 12263}, {74, 12697}, {75, 13877}, {76, 13381}, {77,

14087}, {78, 14561},

MATHEMATICA

a = {4x^2 - 146x + 1373, 4x^2 - 144x + 1459, 4x^2 - 142x + 1301, 4x^2 - 140x + 1877}; (* functional "if" ladder to switch polynomials*) g[x_] := If[PrimeQ[a[[1 + Mod[x, 4]]]], a[[1 + Mod[x, 4]]], If[PrimeQ[a[[1 + Mod[x + 1, 4]]]], a[[1 + Mod[x + 1, 4]]], If[PrimeQ[a[[1 + Mod[x + 2, 4]]]], a[[1 + Mod[x + 2, 4]]], If[PrimeQ[a[[1 + Mod[x + 3, 4]]]], a[[1 + Mod[x + 3, 4]]], a[[1 + Mod[x, 4]]]]]]]; Flatten[Table[If[PrimeQ[g[x]], g[x], {}], {x, 0, 500}]] Length[%] Sort[Table[If[PrimeQ[g[x]], {x, g[x]}, {}], {x, 0, 500}]];

KEYWORD

nonn,obsc,new

AUTHOR

Roger L. Bagula (rlbagulatftn(AT)yahoo.com), Jun 09 2008

EXTENSIONS

Edited by njas, Jun 09 2008

STATUS

approved