login

Revision History for A137828

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
Expansion of phi(x) / f(-x^4)^2 in powers of x where phi(), f() are Ramanujan theta functions.
(history; published version)
#12 by Charles R Greathouse IV at Fri Mar 12 22:24:45 EST 2021
LINKS

M. Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>

Discussion
Fri Mar 12
22:24
OEIS Server: https://oeis.org/edit/global/2897
#11 by N. J. A. Sloane at Wed Nov 13 21:58:48 EST 2019
LINKS

M. Somos, <a href="http://somos.crg4.comA010815/multiqa010815.htmltxt">Introduction to Ramanujan theta functions</a>

Discussion
Wed Nov 13
21:58
OEIS Server: https://oeis.org/edit/global/2832
#10 by Joerg Arndt at Sun Dec 17 03:11:35 EST 2017
STATUS

reviewed

approved

#9 by Michel Marcus at Sat Dec 16 23:55:56 EST 2017
STATUS

proposed

reviewed

#8 by G. C. Greubel at Sat Dec 16 23:25:00 EST 2017
STATUS

editing

proposed

#7 by G. C. Greubel at Sat Dec 16 23:24:45 EST 2017
LINKS

G. C. Greubel, <a href="/A137828/b137828.txt">Table of n, a(n) for n = 0..1000</a>

STATUS

approved

editing

#6 by Michael Somos at Sun Oct 04 22:04:45 EDT 2015
STATUS

editing

approved

#5 by Michael Somos at Sun Oct 04 22:04:10 EDT 2015
NAME

Expansion of phi(qx) / f(-qx^4)^2 in powers of q x where phi(), f() are Ramanujan theta functions.

DATA

1, 2, 0, 0, 4, 4, 0, 0, 9, 12, 0, 0, 20, 24, 0, 0, 42, 50, 0, 0, 80, 92, 0, 0, 147, 172, 0, 0, 260, 296, 0, 0, 445, 510, 0, 0, 744, 840, 0, 0, 1215, 1372, 0, 0, 1944, 2176, 0, 0, 3059, 3424, 0, 0, 4740, 5268, 0, 0, 7239, 8040, 0, 0, 10920, 12072, 0, 0, 16286, 17976, 0, 0

COMMENTS

Ramanujan theta functions: f(q) := Prod_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k=0..oo} q^(k*(k+1)/2) (A010054), chi(q) := Prod_{k>=0} (1+q^(2k+1)) (A000700).

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

LINKS

M. Somos, <a href="http://cis.csuohio.edu/~somos.crg4.com/multiq.pdfhtml">Introduction to Ramanujan theta functions</a>

FORMULA

G.f. is a period 1 Fourier series which satisfies f(-1 / (144 t)) = 6^(-1/2) (t/i)^(-1/2) g(t) where q = exp(2 pi Pi i t) and g(t) is the g.f. for A051136.

a(4*n+2) = a(4*n+3) = 0.

a(4*n + 2) = a(4*n + 3) = 0.

a(4*n) = A051136(n). a(4*n + 1) = 2 * A137829(n).

EXAMPLE

G.f. = 1/q + 2*q^2 x + 4*qx^11 4 + 4*qx^14 5 + 9*qx^23 8 + 12*qx^26 9 + 20*qx^35 12 + 24*qx^13 + 42*x^38 16 + ...

G.f. = 1/q + 2*q^2 + 4*q^11 + 4*q^14 + 9*q^23 + 12*q^26 + 20*q^35 + 24*q^38 + ...

MATHEMATICA

a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x] / QPochhammer[ x^4]^2, {x, 0, n}]; (* Michael Somos, Oct 04 2015 *)

PROG

(PARI) {a(n) = localmy(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^5 / eta(x^4 + A)^4 / eta(x + A)^2, n))};

CROSSREFS

A051136(n) = a(4*n). 2 * A137829(n) = a(4*n+1).

Cf. A051136, A137829.

STATUS

approved

editing

Discussion
Sun Oct 04
22:04
Michael Somos: Added more info. Light edits. Cut sequence terms to 260 chars max. Revised Ramanujan theta comment. Updated URL.
#4 by Charles R Greathouse IV at Thu Mar 05 13:24:03 EST 2015
COMMENTS

Ramanujan theta functions: f(q) := Prod_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k=0..oo} q^(k*(k+1)/2) (A10054A010054), chi(q) := Prod_{k>=0} (1+q^(2k+1)) (A000700).

Discussion
Thu Mar 05
13:24
OEIS Server: https://oeis.org/edit/global/2357
#3 by Charles R Greathouse IV at Wed Apr 30 01:33:24 EDT 2014
AUTHOR

_Michael Somos, _, Feb 12 2008

Discussion
Wed Apr 30
01:33
OEIS Server: https://oeis.org/edit/global/2176