M. Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>
M. Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>
M. Somos, <a href="http://somos.crg4.comA010815/multiqa010815.htmltxt
reviewed
approved
proposed
reviewed
editing
proposed
G. C. Greubel, <a href="/A137828/b137828.txt">Table of n, a(n) for n = 0..1000</a>
approved
editing
editing
approved
Expansion of phi(qx) / f(-qx^4)^2 in powers of q x where phi(), f() are Ramanujan theta functions.
1, 2, 0, 0, 4, 4, 0, 0, 9, 12, 0, 0, 20, 24, 0, 0, 42, 50, 0, 0, 80, 92, 0, 0, 147, 172, 0, 0, 260, 296, 0, 0, 445, 510, 0, 0, 744, 840, 0, 0, 1215, 1372, 0, 0, 1944, 2176, 0, 0, 3059, 3424, 0, 0, 4740, 5268, 0, 0, 7239, 8040, 0, 0, 10920, 12072, 0, 0, 16286, 17976, 0, 0
Ramanujan theta functions: f(q) := Prod_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k=0..oo} q^(k*(k+1)/2) (A010054), chi(q) := Prod_{k>=0} (1+q^(2k+1)) (A000700).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
M. Somos, <a href="http://cis.csuohio.edu/~somos.crg4.com/multiq.pdfhtml
G.f. = 1/q + 2*q^2 x + 4*qx^11 4 + 4*qx^14 5 + 9*qx^23 8 + 12*qx^26 9 + 20*qx^35 12 + 24*qx^13 + 42*x^38 16 + ...
G.f. = 1/q + 2*q^2 + 4*q^11 + 4*q^14 + 9*q^23 + 12*q^26 + 20*q^35 + 24*q^38 + ...
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x] / QPochhammer[ x^4]^2, {x, 0, n}]; (* Michael Somos, Oct 04 2015 *)
(PARI) {a(n) = localmy(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^5 / eta(x^4 + A)^4 / eta(x + A)^2, n))};
approved
editing
_Michael Somos, _, Feb 12 2008