login

Revision History for A135892

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Triangle, read by rows, equal to P^5, where triangle P = A135880.
(history; published version)
#2 by Russ Cox at Fri Mar 30 18:37:08 EDT 2012
AUTHOR

_Paul D. Hanna (pauldhanna(AT)juno.com), _, Dec 15 2007

Discussion
Fri Mar 30
18:37
OEIS Server: https://oeis.org/edit/global/213
#1 by N. J. A. Sloane at Sun Jun 29 03:00:00 EDT 2008
NAME

Triangle, read by rows, equal to P^5, where triangle P = A135880.

DATA

1, 5, 1, 30, 10, 1, 220, 95, 15, 1, 1945, 990, 195, 20, 1, 20340, 11635, 2625, 330, 25, 1, 247066, 154450, 38270, 5440, 500, 30, 1, 3430936, 2302142, 611525, 94515, 9750, 705, 35, 1, 53741404, 38229214, 10721093, 1761940, 196500, 15870, 945, 40, 1

OFFSET

0,2

COMMENTS

Triangle P = A135880 is defined by: column k of P^2 equals column 0 of P^(2k+2) such that column 0 of P^2 equals column 0 of P shift left.

FORMULA

Column k of P^5 = column 2 of R^(k+1) for k>=0 where triangle R = A135894; column 0 of P^5 = column 2 of R; column 1 of P^5 = column 2 of R^2; column 2 of P^5 = column 2 of R^3; column 3 of P^5 = column 2 of R^4.

EXAMPLE

Triangle P^5 begins:

1;

5, 1;

30, 10, 1;

220, 95, 15, 1;

1945, 990, 195, 20, 1;

20340, 11635, 2625, 330, 25, 1;

247066, 154450, 38270, 5440, 500, 30, 1;

3430936, 2302142, 611525, 94515, 9750, 705, 35, 1;

53741404, 38229214, 10721093, 1761940, 196500, 15870, 945, 40, 1;

938816814, 701685738, 205607124, 35429974, 4182295, 363820, 24115, 1220, 45, 1;

where P = A135880 begins:

1;

1, 1;

2, 2, 1;

6, 7, 3, 1;

25, 34, 15, 4, 1;

138, 215, 99, 26, 5, 1;

970, 1698, 814, 216, 40, 6, 1; ...

in which column k of P = column 0 of R^(k+1),

where R = A135894 begins:

1;

1, 1;

2, 3, 1;

6, 12, 5, 1;

25, 63, 30, 7, 1;

138, 421, 220, 56, 9, 1;

970, 3472, 1945, 525, 90, 11, 1; ...

in which column k of R equals column 0 of P^(2k+1).

PROG

(PARI) {T(n, k)=local(P=Mat(1), R, PShR); if(n>0, for(i=0, n, PShR=matrix(#P, #P, r, c, if(r>=c, if(r==c, 1, if(c==1, 0, P[r-1, c-1])))); R=P*PShR; R=matrix(#P+1, #P+1, r, c, if(r>=c, if(r<#P+1, R[r, c], if(c==1, (P^2)[ #P, 1], (P^(2*c-1))[r-c+1, 1])))); P=matrix(#R, #R, r, c, if(r>=c, if(r<#R, P[r, c], (R^c)[r-c+1, 1]))))); (P^5)[n+1, k+1]}

CROSSREFS

Cf. A135880 (P), A135894 (R), A135895 (R^2), A135896 (R^3), A135897 (R^4).

KEYWORD

nonn,tabl

AUTHOR

Paul D. Hanna (pauldhanna(AT)juno.com), Dec 15 2007

STATUS

approved