login

Revision History for A132469

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
a(n) = (2^(5*n) - 1)/31.
(history; published version)
#38 by Alois P. Heinz at Thu Mar 23 17:17:23 EDT 2023
STATUS

proposed

approved

#37 by Stefano Spezia at Thu Mar 23 16:59:23 EDT 2023
STATUS

editing

proposed

#36 by Stefano Spezia at Thu Mar 23 16:43:48 EDT 2023
DATA

0, 1, 33, 1057, 33825, 1082401, 34636833, 1108378657, 35468117025, 1134979744801, 36319351833633, 1162219258676257, 37191016277640225, 1190112520884487201, 38083600668303590433, 1218675221385714893857, 38997607084342876603425, 1247923426698972051309601

#35 by Stefano Spezia at Thu Mar 23 16:30:22 EDT 2023
NAME

a(n) = (2^(5n5*n) - 1)/31.

FORMULA

a(n) = (32^n - 1)/31 = floor( 32^n/31 ) = sum_Sum_{k=0..n} 32^k. - M. F. Hasler, Nov 05 2012

G.f.: x/((1 - x)*(1 - 32*x)). [_- _Bruno Berselli_, Nov 06 2012]

E.g.f.: exp(x)*(exp(31*x) - 1)/31. - Stefano Spezia, Mar 23 2023

STATUS

approved

editing

#34 by Charles R Greathouse IV at Thu Sep 08 08:45:31 EDT 2022
PROG

(MAGMAMagma) [n le 2 select n-1 else 33*Self(n-1) - 32*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012

Discussion
Thu Sep 08
08:45
OEIS Server: https://oeis.org/edit/global/2944
#33 by N. J. A. Sloane at Sat Dec 07 12:18:25 EST 2019
PROG

(Sage) [gaussian_binomial(5*n, 1, 2)/31 for n in xrangerange(1, 17)] # Zerinvary Lajos, May 28 2009

Discussion
Sat Dec 07
12:18
OEIS Server: https://oeis.org/edit/global/2837
#32 by Bruno Berselli at Wed Apr 06 06:05:11 EDT 2016
STATUS

proposed

approved

#31 by Michel Marcus at Wed Apr 06 05:48:21 EDT 2016
STATUS

editing

proposed

#30 by Michel Marcus at Wed Apr 06 05:48:15 EDT 2016
LINKS

Quynh Nguyen, Jean Pedersen, and Hien T. Vu, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL19/Pedersen/pedersen2.html">New Integer Sequences Arising From 3-Period Folding Numbers</a>, Vol. 19 (2016), Article 16.3.1. See Table 1.

PROG

(Sage) [gaussian_binomial(5*n, 1, 2)/31 for n in xrange(1, 17)] # [From __Zerinvary Lajos_, May 28 2009]

STATUS

approved

editing

#29 by Bruno Berselli at Fri Nov 13 09:25:26 EST 2015
STATUS

editing

approved