proposed
approved
proposed
approved
editing
proposed
0, 1, 33, 1057, 33825, 1082401, 34636833, 1108378657, 35468117025, 1134979744801, 36319351833633, 1162219258676257, 37191016277640225, 1190112520884487201, 38083600668303590433, 1218675221385714893857, 38997607084342876603425, 1247923426698972051309601
a(n) = (2^(5n5*n) - 1)/31.
a(n) = (32^n - 1)/31 = floor( 32^n/31 ) = sum_Sum_{k=0..n} 32^k. - M. F. Hasler, Nov 05 2012
G.f.: x/((1 - x)*(1 - 32*x)). [_- _Bruno Berselli_, Nov 06 2012]
E.g.f.: exp(x)*(exp(31*x) - 1)/31. - Stefano Spezia, Mar 23 2023
approved
editing
(MAGMAMagma) [n le 2 select n-1 else 33*Self(n-1) - 32*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
(Sage) [gaussian_binomial(5*n, 1, 2)/31 for n in xrangerange(1, 17)] # Zerinvary Lajos, May 28 2009
proposed
approved
editing
proposed
Quynh Nguyen, Jean Pedersen, and Hien T. Vu, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL19/Pedersen/pedersen2.html">New Integer Sequences Arising From 3-Period Folding Numbers</a>, Vol. 19 (2016), Article 16.3.1. See Table 1.
(Sage) [gaussian_binomial(5*n, 1, 2)/31 for n in xrange(1, 17)] # [From __Zerinvary Lajos_, May 28 2009]
approved
editing
editing
approved