reviewed
approved
reviewed
approved
proposed
reviewed
editing
proposed
Alice L. L. Gao, and Sergey Kitaev, <a href="https://arxiv.org/abs/1903.08946">On partially ordered patterns of length 4 and 5 in permutations</a>, arXiv:1903.08946 [math.CO], 2019.
Alice L. L. Gao, and Sergey Kitaev, <a href="https://doi.org/10.37236/8605">On partially ordered patterns of length 4 and 5 in permutations</a>, The Electronic Journal of Combinatorics 26(3) (2019), P3.26.
proposed
editing
editing
proposed
a(n) = hypergeom([1/2, -n - 1, -n], [2, 2], 4). - Vaclav Kotesovec, May 14 2016
a := n -> hypergeom([1/2, -n - 1, -n], [2, 2], 4):
seq(simplify(a(n)), n = 0..23); # Peter Luschny, Nov 06 2023
approved
editing
editing
approved
1, 2, 6, 24, 115, 618, 3591, 22088, 141903, 943590, 6452490, 45159480, 322305165, 2339100078, 17223121350, 128428689888, 968383277791, 7374380672718, 56655414930642, 438741242896680, 3422125459579869, 26866961380274598, 212191772351034249, 1685036376746788392
proposed
editing
editing
proposed
a(n) is the number of permutations of length n+1 avoiding the partially ordered pattern (POP) {1>2>3>4} of length 5. That is, the number of length n+1 permutations having no subsequences of length 5 in which the element in position 1 is larger than the element in position 2, which in turn is larger than the element in position 3, and that element is larger than the element in position 4. - Sergey Kitaev, Dec 13 2020
Alice L. L. Gao, Sergey Kitaev, <a href="https://doi.org/10.37236/8605">On partially ordered patterns of length 4 and 5 in permutations</a>, The Electronic Journal of Combinatorics 26(3) (2019), P3.26.
approved
editing