login

Revision History for A123640

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
a(n) = A065120(n) modulo 2.
(history; published version)
#11 by Peter Luschny at Wed Jan 24 07:57:18 EST 2024
STATUS

proposed

approved

#10 by Joerg Arndt at Wed Jan 24 02:40:24 EST 2024
STATUS

editing

proposed

#9 by Joerg Arndt at Wed Jan 24 02:39:55 EST 2024
NAME

Consider the 2^n compositions of n per row and mark only those ending in an odd part.

a(n) = A065120(n) modulo 2.

COMMENTS

Previous name was: Consider the 2^n compositions of n per row and mark only those ending in an odd part.

FORMULA

a(n) = Mod(A065120(n),2).

EXTENSIONS

New name using given formula, Joerg Arndt, Jan 24 2024

STATUS

approved

editing

#8 by Joerg Arndt at Sun Feb 09 04:13:17 EST 2014
STATUS

proposed

approved

#7 by Michel Marcus at Sun Feb 09 01:28:09 EST 2014
STATUS

editing

proposed

#6 by Michel Marcus at Sun Feb 09 01:27:29 EST 2014
PROG

(PARI) lista(nn) = {my(v = vector(nn)); v[1] = 1; for (i=2, nn, v[i] = mg(i-1)*v[(i+1)\2]; ); for (i=1, nn, print1(valuation(v[i], 2) % 2, ", "); ); } \\ Michel Marcus, Feb 09 2014

STATUS

approved

editing

#5 by Russ Cox at Sat Mar 31 13:23:38 EDT 2012
AUTHOR

_Alford Arnold (Alford1940(AT)aol.com), _, Oct 04 2006

Discussion
Sat Mar 31
13:23
OEIS Server: https://oeis.org/edit/global/889
#4 by Russ Cox at Sat Mar 31 13:22:27 EDT 2012
EXTENSIONS

More terms from _Nathaniel Johnston (nathaniel(AT)nathanieljohnston.com), _, Apr 30 2011

Discussion
Sat Mar 31
13:22
OEIS Server: https://oeis.org/edit/global/888
#3 by Nathaniel Johnston at Sat Apr 30 15:49:58 EDT 2011
STATUS

proposed

approved

#2 by Nathaniel Johnston at Sat Apr 30 15:49:54 EDT 2011
DATA

0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0

FORMULA

a(n) = Mod(A065120(n),2).

EXAMPLE

A065120 begins 0 , 1 , 2 , 1 , 3 , 2 , 1 , 1 , 4 , 3 , 2 , 2 , 1 , 1 , 1 , 1 , ...

therefore

Therefore this sequence begins 0 , 1 , 0 , 1 , 1 , 0 , 1 , 1 , 0 , 1 , 0 , 0 , 1 , 1 , 1 , 1 , ...

CROSSREFS
KEYWORD

easy,more,nonn

EXTENSIONS

More terms from Nathaniel Johnston (nathaniel(AT)nathanieljohnston.com), Apr 30 2011

STATUS

approved

proposed