login

Revision History for A121798

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
a(n)= 4*a(n-1) +13*a(n-2) -44*a(n-3) -57*a(n-4) +120*a(n-5) +63*a(n-6) -56*a(n-7) +6*a(n-8).
(history; published version)
#10 by Ray Chandler at Fri Jul 31 20:35:16 EDT 2015
STATUS

editing

approved

#9 by Ray Chandler at Fri Jul 31 20:35:13 EDT 2015
LINKS

<a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (4, 13, -44, -57, 120, 63, -56, 6).

STATUS

approved

editing

#8 by Charles R Greathouse IV at Wed Mar 12 16:36:54 EDT 2014
AUTHOR

_Roger L. Bagula_, Aug 26 2006

Discussion
Wed Mar 12
16:36
OEIS Server: https://oeis.org/edit/global/2126
#7 by Charles R Greathouse IV at Thu Nov 21 12:48:59 EST 2013
MATHEMATICA

LinearRecurrence[{4, 13, -44, -57, 120, 63, -56, 6}, {0, 28, 408, 1502, 7821, 31911, 145162, 616196}, 30] (* From _Harvey P. Dale, _, Feb 29 2012 *)

Discussion
Thu Nov 21
12:48
OEIS Server: https://oeis.org/edit/global/2062
#6 by Russ Cox at Fri Mar 30 18:49:16 EDT 2012
AUTHOR

_Roger Bagula (rlbagulatftn(AT)yahoo.com), _, Aug 26 2006

Discussion
Fri Mar 30
18:49
OEIS Server: https://oeis.org/edit/global/236
#5 by Harvey P. Dale at Wed Feb 29 16:36:25 EST 2012
STATUS

editing

approved

#4 by Harvey P. Dale at Wed Feb 29 16:36:15 EST 2012
MATHEMATICA

LinearRecurrence[{4, 13, -44, -57, 120, 63, -56, 6}, {0, 28, 408, 1502, 7821, 31911, 145162, 616196}, 30] (* From Harvey P. Dale, Feb 29 2012 *)

STATUS

approved

editing

#3 by N. J. A. Sloane at Tue Jun 01 03:00:00 EDT 2010
NAME

Dual-Hyper-tetrahedron bonding graph 12 X 12 matrix markov: One hyper-tetrahedron in the time direction and one in the Kaluza -Klein tau direction to give a broken symmetry 5 dimensional Platonic model:( with blocks of 4 X 4 zero matrices) Characteristic Polynomial: (-3 + x)(1 +x)^3(-1 + 2 x + x^2)^2(-2 + 16 x - 5 x^2 - 4 x^3 + x^4).

a(n)= 4*a(n-1) +13*a(n-2) -44*a(n-3) -57*a(n-4) +120*a(n-5) +63*a(n-6) -56*a(n-7) +6*a(n-8).

COMMENTS

It has become clear that to understand current physics we have to extend our geometric models past four dimension to five. The concept of a dual-hyper- Platonic bonding graph allows one without a specific group theory gauge group to find a secular equation with relative energy states.

FORMULA

M = {{0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0}, {1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0}, {1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0}, {1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1}, { 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0}, {0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0}, {0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0}, {0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0}, {1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 01}, {0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1}, {0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1}, {0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0}} v[1] = Table[Fibonacci[n], {n, 0, 11}] v[n_] := v[n] = M.v[n - 1] a(n) = v[n][[1]]

G.f.: x^2*(-28-296*x+494*x^2+2259*x^3-649*x^4-1829*x^5+281*x^6)/( (3*x-1) * (1+x) * (x^2-2*x-1) * (2*x^4-16*x^3+5*x^2+4*x-1)). [Oct 14 2009]

KEYWORD

nonn,uned,new

nonn

EXTENSIONS

Definition replaced by recurrence - The Assoc. Editors of the OEIS, Oct 14 2009

#2 by N. J. A. Sloane at Fri May 11 03:00:00 EDT 2007
NAME

Dual-Hyper-tetrahedron bonding graph 12by12 12 X 12 matrix markov: One hyper-tetrahedron in the time direction and one in the Kaluza -Klein tau direction to give a broken symmetry 5 dimensional Platonic model:( with blocks of 4by4 4 X 4 zero matrices) Characteristic Polynomial: (-3 + x)(1 +x)^3(-1 + 2 x + x^2)^2(-2 + 16 x - 5 x^2 - 4 x^3 + x^4).

KEYWORD

nonn,uned,new

AUTHOR

Roger Bagula (rlbagularlbagulatftn(AT)sbcglobalyahoo.netcom), Aug 26 2006

#1 by N. J. A. Sloane at Fri Sep 29 03:00:00 EDT 2006
NAME

Dual-Hyper-tetrahedron bonding graph 12by12 matrix markov: One hyper-tetrahedron in the time direction and one in the Kaluza -Klein tau direction to give a broken symmetry 5 dimensional Platonic model:( with blocks of 4by4 zero matrices) Characteristic Polynomial: (-3 + x)(1 +x)^3(-1 + 2 x + x^2)^2(-2 + 16 x - 5 x^2 - 4 x^3 + x^4).

DATA

0, 28, 408, 1502, 7821, 31911, 145162, 616196, 2706385, 11640499, 50598522, 218517332, 946752849, 4093542243, 17716803778, 76627964684, 331523693857, 1434000301795, 6203258085066, 26832402306020, 116067057052689

OFFSET

1,2

COMMENTS

It has become clear that to understand current physics we have to extend our geometric models past four dimension to five. The concept of a dual-hyper- Platonic bonding graph allows one without a specific group theory gauge group to find a secular equation with relative energy states.

FORMULA

M = {{0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0}, {1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0}, {1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0}, {1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1}, { 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0}, {0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0}, {0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0}, {0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0}, {1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 01}, {0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1}, {0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1}, {0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0}} v[1] = Table[Fibonacci[n], {n, 0, 11}] v[n_] := v[n] = M.v[n - 1] a(n) = v[n][[1]]

MATHEMATICA

M = {{0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0}, {1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0}, {1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0}, {1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1}, { 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0}, {0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0}, {0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0}, {0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0}, {1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 01}, {0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1}, {0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1}, {0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0}} v[1] = Table[Fibonacci[n], {n, 0, 11}] v[n_] := v[n] = M.v[n - 1] a = Table[Floor[v[n][[1]]], {n, 1, 50}] Det[M - x*IdentityMatrix[12]] Factor[%] aaa = Table[x /. NSolve[Det[M - x*IdentityMatrix[12]] == 0, x][[n]], {n, 1, 12}]

KEYWORD

nonn,uned

AUTHOR

Roger Bagula (rlbagula(AT)sbcglobal.net), Aug 26 2006

STATUS

approved