proposed
approved
proposed
approved
editing
proposed
Vincenzo Librandi, <a href="/A114464/b114464.txt">Table of n, a(n) for n = 0..200</a>
approved
editing
editing
approved
Recurrence: (n-3)*(n+1)*a(n) = (4*n^2 - 14*n + 9)*a(n-1) - (2*n^2 - 10*n + 15)*a(n-2) + (4*n^2 - 26*n + 39)*a(n-3) - (n-6)*(n-2)*a(n-4). - Vaclav Kotesovec, Feb 13 2014
a(n) ~ sqrt(2*sqrt(3)-3) * (2+sqrt(3))^n / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Feb 13 2014
CoefficientList[Series[(1-x+3*x^2-x^3-(1-x)*Sqrt[(1-4*x+x^2)*(1+x^2)])/2/x, {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 13 2014 *)
approved
editing
editing
approved
Conjecture: (n+1)*a(n) +(-5*n+3)*a(n-1) +2*(3*n-7)*a(n-2) +2*(-3*n+11)*a(n-3) +(5*n-27)*a(n-4) +(-n+7)*a(n-5)=0. - R. J. Mathar, Nov 26 2012
approved
editing
G.f. 1+x/(1-x)c(x^2/(1-x)^4), c(x) the g.f. of A000108; a(n+1)=sum{k=0..floor(n/2), C(n+2k,4k)C(k)}; - _Paul Barry (pbarry(AT)wit.ie), _, May 31 2006
_Emeric Deutsch (deutsch(AT)duke.poly.edu), _, Nov 29 2005