login

Revision History for A113988

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Triangle, read by rows, equal to the matrix square of A113983.
(history; published version)
#6 by Charles R Greathouse IV at Tue Jun 13 23:38:18 EDT 2017
STATUS

editing

approved

#5 by Charles R Greathouse IV at Tue Jun 13 23:38:00 EDT 2017
PROG

(PARI) {T(n, k)=local(A, B); A=Mat(1); for(m=2, n+1, B=matrix(m, m); for(i=1, m, for(j=1, i, if(i<3 || j==1 || j==i, B[i, j]=1, B[i, j]=A[i-1, j-1]+(A^2)[i-2, j-1] ); )); A=B); (A^2)[n+1, k+1]}

STATUS

approved

editing

#4 by Russ Cox at Fri Mar 30 18:36:52 EDT 2012
AUTHOR

_Paul D. Hanna (pauldhanna(AT)juno.com), _, Nov 12 2005

Discussion
Fri Mar 30
18:36
OEIS Server: https://oeis.org/edit/global/213
#3 by N. J. A. Sloane at Sat Nov 10 03:00:00 EST 2007
KEYWORD

nonn,tabl,new

AUTHOR

Paul D . Hanna (pauldhanna(AT)juno.com), Nov 12 2005

#2 by N. J. A. Sloane at Fri Feb 24 03:00:00 EST 2006
FORMULA

G.f.: A(x, y) = ( (1-x*y)*GF(A113983) - 1/(1-x) )/(x^2*y) (cf. A113983). T(n, 0) = T(n-2, 0) + T(n-1, 1) + 2.

KEYWORD

nonn,tabl,new

#1 by N. J. A. Sloane at Tue Jan 24 03:00:00 EST 2006
NAME

Triangle, read by rows, equal to the matrix square of A113983.

DATA

1, 2, 1, 4, 4, 1, 8, 12, 6, 1, 18, 36, 26, 8, 1, 46, 116, 108, 46, 10, 1, 136, 416, 468, 248, 72, 12, 1, 464, 1680, 2194, 1366, 480, 104, 14, 1, 1818, 7656, 11294, 7976, 3222, 828, 142, 16, 1, 8122, 39256, 64152, 50186, 22590, 6568, 1316, 186, 18, 1

OFFSET

0,2

FORMULA

G.f.: A(x,y) = ( (1-x*y)*GF(A113983) - 1/(1-x) )/(x^2*y) (cf. A113983). T(n,0) = T(n-2,0) + T(n-1,1) + 2.

EXAMPLE

Triangle begins:

1;

2,1;

4,4,1;

8,12,6,1;

18,36,26,8,1;

46,116,108,46,10,1;

136,416,468,248,72,12,1;

464,1680,2194,1366,480,104,14,1;

1818,7656,11294,7976,3222,828,142,16,1;

8122,39256,64152,50186,22590,6568,1316,186,18,1;

41076,225348,402072,342584,168296,53816,12056,1968,236,20,1; ...

Notice that T(n+1,0) = T(n,1) + T(n-1,0) + 2:

T(7,0) = 464 = T(6,1) + T(5,0) = 416 + 46 + 2;

T(8,0) = 1818 = T(7,1) + T(6,0) = 1680 + 136 + 2.

PROG

(PARI) {T(n, k)=local(A, B); A=Mat(1); for(m=2, n+1, B=matrix(m, m); for(i=1, m, for(j=1, i, if(i<3|j==1|j==i, B[i, j]=1, B[i, j]=A[i-1, j-1]+(A^2)[i-2, j-1] ); )); A=B); (A^2)[n+1, k+1]}

CROSSREFS

Cf. A113989 (column 0), A113990 (column 1), A113991 (column 2), A113992 (column 3); A113983, A113993.

KEYWORD

nonn,tabl

AUTHOR

Paul D Hanna (pauldhanna(AT)juno.com), Nov 12 2005

STATUS

approved