_Philippe DELEHAM_ Deléham_ and Paul D. Hanna, Oct 28 2005
_Philippe DELEHAM_ Deléham_ and Paul D. Hanna, Oct 28 2005
_Philippe DELEHAM (kolotoko(AT)wanadoo.fr) _ and Paul D. Hanna, Oct 28 2005
Philippe DELEHAM (kolotoko(AT)wanadoo.fr) and _Paul D. Hanna (pauldhanna(AT)juno.com), _, Oct 28 2005
nonn,new
nonn
Philippe DELEHAM (kolotoko(AT)wanadoo.fr) and Paul D . Hanna (pauldhanna(AT)juno.com), Oct 28 2005
a(0) = 1; a(n+1) = Sum_{k=0..n} a(k)*A113136(n-k) .
nonn,new
nonn
nonn,new
nonn
Philippe DELEHAM (kolotoko(AT)lagoonwanadoo.ncfr) and Paul D Hanna (pauldhanna(AT)juno.com), Oct 28 2005
a(n) = Sum_{j=0..k} 7^(k-j)*A111146(k, j).
nonn,new
nonn
Row 7 of table A113143; equal to INVERT of 7-fold factorials shifted one place right.
1, 1, 2, 11, 141, 2928, 82597, 2925973, 124502114, 6179425823, 350316271761, 22326710345256, 1579953165170881, 122905129550802985, 10423661531476766834, 957176457621821573987, 94608465923392572536421
0,3
A(x) = 1 + x + 2*x^2 + 11*x^3 + 141*x^4 + 2928*x^5 +...
= 1/(1 - x - x^2 - 8*x^3 - 120*x^4 -...- A113136(n)*x^(n+1)
-...).
(PARI) {a(n)=local(x=X+X*O(X^n)); A=1/(1-x-x^2*sum(j=0, n, x^j*prod(i=0, j, 7*i+1))); return(polcoeff(A, n, X))}
nonn
Philippe DELEHAM (kolotoko(AT)lagoon.nc) and Paul D Hanna (pauldhanna(AT)juno.com), Oct 28 2005
approved