login

Revision History for A112320

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Coefficient of x^n in the (n+1)-th iteration of (x + x^2) for n>=1.
(history; published version)
#10 by Alois P. Heinz at Fri Oct 04 16:37:32 EDT 2024
STATUS

proposed

approved

#9 by Robert C. Lyons at Fri Oct 04 16:36:46 EDT 2024
STATUS

editing

proposed

#8 by Robert C. Lyons at Fri Oct 04 16:36:44 EDT 2024
PROG

(PARI) {a(n)=local(F=x+x^2, G=x+x*O(x^n)); if(n<1, 0, for(i=1, n+1, G=subst(F, x, G)); return(polcoeff(G, n, x)))}

STATUS

approved

editing

#7 by Paul D. Hanna at Tue Feb 10 17:28:38 EST 2015
STATUS

editing

approved

#6 by Paul D. Hanna at Tue Feb 10 17:28:36 EST 2015
NAME

Coefficients Coefficient of x^n in the (n+1)-th iteration of (x + x^2) for n>=1.

MAPLE

{a(n)=local(F=x+x^2, G=x+x*O(x^n)); if(n<1, 0, for(i=1, n+1, G=subst(F, x, G)); return(polcoeff(G, n, x)))}

PROG

(PARI) {a(n)=local(F=x+x^2, G=x+x*O(x^n)); if(n<1, 0, for(i=1, n+1, G=subst(F, x, G)); return(polcoeff(G, n, x)))}

for(n=1, 25, print1(a(n), ", "))

STATUS

approved

editing

#5 by Paul D. Hanna at Tue Feb 10 17:25:40 EST 2015
STATUS

editing

approved

#4 by Paul D. Hanna at Tue Feb 10 17:25:28 EST 2015
NAME

Coefficients of x^n in the (n+1)-th self-composition iteration of (x + x^2) for n>=1.

EXAMPLE

Initial terms in self-compositions The first few iterations of (x+x^2) arebegin:

F(x) = x + x^2;

F(F(x)) = (1)*x + 2*x^2 + 2*x^3 + x^4;

F(F(F(x))) = x + (3)*x^2 + 6*x^3 + 9*x^4 + 10*x^5 +...;

F(F(F(F(x)))) = x + 4*x^2 + (12)*x^3 + 30*x^4 + 64*x^5 +...;

F(F(F(F(F(x))))) = x + 5*x^2 + 20*x^3 + (70)*x^4 + 220*x^5 +...;

F(F(F(F(F(F(x)))))) = x + 6*x^2 + 30*x^3 + 135*x^4 + (560)*x^5 +...;

coefficients enclosed in parenthesis form the initial terms of this sequence.

STATUS

approved

editing

#3 by Russ Cox at Fri Mar 30 18:36:51 EDT 2012
AUTHOR

_Paul D. Hanna (pauldhanna(AT)juno.com), _, Sep 06 2005

Discussion
Fri Mar 30
18:36
OEIS Server: https://oeis.org/edit/global/213
#2 by N. J. A. Sloane at Sat Nov 10 03:00:00 EST 2007
KEYWORD

nonn,new

nonn

AUTHOR

Paul D . Hanna (pauldhanna(AT)juno.com), Sep 06 2005

#1 by N. J. A. Sloane at Wed Sep 21 03:00:00 EDT 2005
NAME

Coefficients of x^n in the (n+1)-th self-composition of (x + x^2) for n>=1.

DATA

1, 3, 12, 70, 560, 5810, 74760, 1153740, 20817588, 430604724, 10052947476, 261595087182, 7509722346204, 235808741944100, 8040824716606176, 295914258931377276, 11690732617035570008, 493527339623630078552

OFFSET

1,2

FORMULA

a(n) = [x^n] F_{n+1}(x) where F_{n+1}(x) = F_n(x+x^2) with F_1(x) = x+x^2 and F_0(x)=x for n>=1.

EXAMPLE

Initial terms in self-compositions of (x+x^2) are:

F(x) = x + x^2

F(F(x)) = (1)*x + 2*x^2 + 2*x^3 + x^4

F(F(F(x))) = x + (3)*x^2 + 6*x^3 + 9*x^4 + 10*x^5 +...

F(F(F(F(x)))) = x + 4*x^2 + (12)*x^3 + 30*x^4 + 64*x^5 +...

F(F(F(F(F(x))))) = x + 5*x^2 + 20*x^3 + (70)*x^4 + 220*x^5 +...

F(F(F(F(F(F(x)))))) = x + 6*x^2 + 30*x^3 + 135*x^4 + (560)*x^5 +...

MAPLE

{a(n)=local(F=x+x^2, G=x+x*O(x^n)); if(n<1, 0, for(i=1, n+1, G=subst(F, x, G)); return(polcoeff(G, n, x)))}

CROSSREFS
KEYWORD

nonn

AUTHOR

Paul D Hanna (pauldhanna(AT)juno.com), Sep 06 2005

STATUS

approved