login

Revision History for A112125

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
G.f. A(x) satisfies A(A(A(..(A(x))..))) = B(x) (12th self-COMPOSE of A) such that the coefficients of B(x) consist only of numbers {1,2,3,..,12}, with B(0) = 0.
(history; published version)
#6 by Jon E. Schoenfield at Fri Mar 13 23:48:15 EDT 2015
STATUS

editing

approved

#5 by Jon E. Schoenfield at Fri Mar 13 23:48:13 EDT 2015
NAME

G.f. A(x) satisfies A(A(A(..(A(x))..))) = B(x) (12-th 12th self-COMPOSE of A) such that the coefficients of B(x) consist only of numbers {1,2,3,..,12}, with B(0) = 0.

STATUS

approved

editing

#4 by Russ Cox at Fri Mar 30 18:36:51 EDT 2012
AUTHOR

_Paul D. Hanna (pauldhanna(AT)juno.com), _, Aug 27 2005

Discussion
Fri Mar 30
18:36
OEIS Server: https://oeis.org/edit/global/213
#3 by N. J. A. Sloane at Sat Nov 10 03:00:00 EST 2007
KEYWORD

sign,new

sign

AUTHOR

Paul D . Hanna (pauldhanna(AT)juno.com), Aug 27 2005

#2 by N. J. A. Sloane at Tue Jan 24 03:00:00 EST 2006
OFFSET

1,43

PROG

(PARI) {a(n, m=12)=local(F=x+x^2+x*O(x^n), G); if(n<1, 0, for(k=3, n, G=F+x*O(x^k); for(i=1, m-1, G=subst(F, x, G)); F=F-((polcoeff(G, k)-1)\m)*x^k); return(polcoeff(F, n, x)))}

KEYWORD

sign,new

sign

#1 by N. J. A. Sloane at Wed Sep 21 03:00:00 EDT 2005
NAME

G.f. A(x) satisfies A(A(A(..(A(x))..))) = B(x) (12-th self-COMPOSE of A) such that the coefficients of B(x) consist only of numbers {1,2,3,..,12}, with B(0) = 0.

DATA

1, 1, -10, 160, -3061, 63775, -1381434, 30233546, -654989371, 13821523157, -280493565375, 5432981693533, -100769609590332, 1833421110751790, -34286913831217395, 678578947805323394, -13377225136748683778, 221000164094797572734, -2119677884300620846621

OFFSET

1,4

EXAMPLE

A(x) = x + x^2 - 10*x^3 + 160*x^4 - 3061*x^5 + 63775*x^6 +...

where A(A(A(A(A(A(A(A(A(A(A(A(x)))))))))))) =

x + 12*x^2 + 12*x^3 + 6*x^4 + 8*x^5 + 8*x^6 + 12*x^7 + 2*x^8 +...

is the g.f. of A112124.

PROG

(PARI) {a(n, m=12)=local(F=x+x^2+x*O(x^n), G); if(n<1, 0, for(k=3, n, G=F+x*O(x^k); for(i=1, m-1, G=subst(F, x, G)); F=F-((polcoeff(G, k)-1)\m)*x^k); return(polcoeff(F, n, x)))}

CROSSREFS
KEYWORD

sign

AUTHOR

Paul D Hanna (pauldhanna(AT)juno.com), Aug 27 2005

STATUS

approved