reviewed
approved
reviewed
approved
proposed
reviewed
editing
proposed
a(n) = (-1)^(n-1) * [floor((n-1)/2])! * [floor(n/2])! for n > 0, with a(0)=0.
E.g.f.: A(x) = (1-x/2)/sqrt(1-x^2/4)*acosarccos(1-x^2/2).
G.f.: x*G(0) where G(k) = 1 - (k+1)*x/(1 - x*(k+1)/(x*(k+1) - 1/G(k+1) )) ; (continued fraction, 3-step). - Sergei N. Gladkovskii, Nov 28 2012
G.f.: G(0)*x/2, where G(k) = 1 + 1/(1 - x*(k+1)/(x*(1*k+1) - 1/(1 + 1/(1 - x*(k+1)/(x*(1*k+1) - 1/G(k+1)))))); (continued fraction). - Sergei N. Gladkovskii, Jun 20 2013
G.f.: x/G(0), where G(k) = 1 - x*(k+1)/(x*(k+1) - 1/(1 - x*(k+1)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 07 2013
Conjecture: 4*a(n) + 2*a(n-1) - (n-1)*(n-2)*a(n-2) = 0, n > 2. - R. J. Mathar, Nov 25 2015
E.g.f.: A(x) = x - (1/2!)*x^2 + (1/3!)*x^3 - (2/4!)*x^4 + (4/5!)*x^5 - (12/6!)*x^6 + (36/7!)*x^7 - (144/8!)*x^8 + (576/9!)*x^9 + ... where A(x)*A(-x) = -acosarccos(1-x^2/2)^2.
approved
editing
proposed
approved
editing
proposed
E.g.f.: A(x) = x - 1/2!*x^2 + 1/3!*x^3 - 2/4!*x^4 + 4/5!*x^5 - 12/6!*x^6 + 36/7!*x^7 - 144/8!*x^8 + 576/9!*x^9 + ... where A(x)*A(-x) = -acos(1-x^2/2)^2.
- 12/6!*x^6 + 36/7!*x^7 - 144/8!*x^8 + 576/9!*x^9 +...
where A(x)*A(-x) = -acos(1-x^2/2)^2.
Conjecture: 4*a(n) +2*a(n-1) -(n-1)*(n-2)*a(n-2)=0, n>2 . - R. J. Mathar, Nov 25 2015
proposed
editing
editing
proposed
Conjecture: 4*a(n) +2*a(n-1) -(n-1)*(n-2)*a(n-2)=0, n>2 - R. J. Mathar, Nov 25 2015
approved
editing