login

Revision History for A110166

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
Row sums of Riordan array A110165.
(history; published version)
#24 by Michael De Vlieger at Mon Jan 10 11:44:00 EST 2022
STATUS

reviewed

approved

#23 by Joerg Arndt at Mon Jan 10 09:13:53 EST 2022
STATUS

proposed

reviewed

#22 by Peter Bala at Sun Jan 09 08:41:02 EST 2022
STATUS

editing

proposed

#21 by Peter Bala at Sun Jan 09 07:51:16 EST 2022
COMMENTS

From Peter Bala, Jan 09 2022: (Start)

Conjectures: for k >= 2, the number of k-ary words of length n such that the number of 1's <= the number of 0's is equal to the coefficient of x^n in the expansion of ( k*x + 1/(1 + x) )^n, and satisfies the recurrence u(0) = 1, u(1) = k-1 and n*u(n) = (k-2)*(2*n-1)*u(n-1) - k*(k-4)*(n-1)* u(n-2) + k^(n-1) for n >= 2.

For cases see A027306 (k = 2), A027914 (k = 3) and A032443 (k = 4). (End)

CROSSREFS

Row sums A110165. Cf. A026375, A032443, A246437, A242586.

#20 by Peter Bala at Sat Jan 08 16:41:52 EST 2022
CROSSREFS

Row sums A110165. Cf. A026375, A032443, A242586.

#19 by Peter Bala at Sat Jan 08 16:26:09 EST 2022
FORMULA

a(n) = Sum_{k = 0..n} Sum_{j = 0..n} C(n, j)*C(2*j, j+k).

From Peter Bala, Jan 07 08 2022: (Start)

a(n) = (1/2)*(5^n + A026375(n)) = (1/2)* (5^n + Sum_{k = 0..n} binomial(n,k) *binomial(2*k-1,,k)*(-1/5)^k.

a(n) = (1/2)*(5^n)*(1 + Sum_{k = 0..n} binomial(n,k)*binomial(2*k,k)*(-1/5)^k).

a(0) = 1, a(1) = 4 and n*a(n) = 3*(2*n-1)*a(n-1) - 5*(n-1)*a(n-2) + 5^(n-1) for n >= 2.

The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for prime p and positive integers n and k. (End)

Binomial transform of A032443. (End)

MAPLE

seq( (1/2)*(5^n + add(binomial(n, k)*binomial(2*k, k), k = 0..n)), n = 0..30); # Peter Bala, Jan 08 2022

CROSSREFS

Row sums A110165. Cf. A026375, A032443.

#18 by Peter Bala at Fri Jan 07 16:16:18 EST 2022
FORMULA

a(n) = sumSum_{k=0..n, sum} Sum_{j=0..n, } C(n, j)*C(2*j, j+k)}}.

From Peter Bala, Jan 07 2022: (Start)

a(n) = 5^n * Sum_{k = 0..n} binomial(n,k)*binomial(2*k-1,k)*(-1/5)^k.

a(n) = [x^n] ( 5*x + 1/(1 + x) )^n.

The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for prime p and positive integers n and k. (End)

KEYWORD

easy,nonn

nonn,easy

STATUS

approved

editing

#17 by Charles R Greathouse IV at Thu Nov 21 12:48:43 EST 2013
MATHEMATICA

Table[Sum[Sum[Binomial[n, j]Binomial[2j, j+k], {j, 0, n}], {k, 0, n}], {n, 0, 25}] (* From _Harvey P. Dale, _, Dec 16 2011 *)

Discussion
Thu Nov 21
12:48
OEIS Server: https://oeis.org/edit/global/2062
#16 by Joerg Arndt at Thu May 16 07:31:20 EDT 2013
STATUS

proposed

approved

#15 by Vincenzo Librandi at Thu May 16 01:46:57 EDT 2013
STATUS

editing

proposed