login

Revision History for A106736

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Primes of the form r(r(r(r(n)+1)+1)+1)+1, where A141468(n) = r(n) = n-th nonprime.
(history; published version)
#10 by Alois P. Heinz at Sun Aug 09 08:26:10 EDT 2015
STATUS

reviewed

approved

#9 by Joerg Arndt at Sun Aug 09 02:51:08 EDT 2015
STATUS

proposed

reviewed

#8 by Jon E. Schoenfield at Sat Aug 08 21:50:25 EDT 2015
STATUS

editing

proposed

#7 by Jon E. Schoenfield at Sat Aug 08 21:48:53 EDT 2015
NAME

Primes of the form r(r(r(r(n)+1)+1)+1)+1, where A141468(n) = r(n) = n-th nonprime.

EXAMPLE

If n=1, then:

If n=2, then:

If n=3, then:

If n=4, then:

If n=5, then:

If n=6, then:

If n=7, then:

If n=8, then:

If n=9, then:

If n=10, then:

If n=11, then:

MAPLE

A141468 := proc(n) option remember ; if n = 1 then 0; else for a from procname(n-1)+1 do if not isprime(a) then RETURN(a); fi; od: fi; end: rep := 4: for n from 1 to 400 do arep := n ; for i from 1 to rep do arep := A141468(arep)+1 ; od: if isprime(arep) then printf("%d, ", arep) ; fi; od: [From _# _R. J. Mathar_, Sep 05 2008]

STATUS

approved

editing

Discussion
Sat Aug 08
21:50
Jon E. Schoenfield: I removed the "If ... then" constructs, because they were illogical here.  (E.g., we wouldn't say, "If n=5, then 5^2 = 25"; 5^2 is 25, and that doesn't depend on n.)
#6 by Russ Cox at Fri Mar 30 18:52:25 EDT 2012
AUTHOR

_Juri-Stepan Gerasimov (2stepan(AT)rambler.ru), _, Aug 25 2008

Discussion
Fri Mar 30
18:52
OEIS Server: https://oeis.org/edit/global/257
#5 by Russ Cox at Fri Mar 30 17:39:05 EDT 2012
MAPLE

A141468 := proc(n) option remember ; if n = 1 then 0; else for a from procname(n-1)+1 do if not isprime(a) then RETURN(a); fi; od: fi; end: rep := 4: for n from 1 to 400 do arep := n ; for i from 1 to rep do arep := A141468(arep)+1 ; od: if isprime(arep) then printf("%d, ", arep) ; fi; od: [From _R. J. Mathar (mathar(AT)strw.leidenuniv.nl), _, Sep 05 2008]

EXTENSIONS

97 removed and extended by _R. J. Mathar (mathar(AT)strw.leidenuniv.nl), _, Sep 05 2008

Discussion
Fri Mar 30
17:39
OEIS Server: https://oeis.org/edit/global/190
#4 by N. J. A. Sloane at Fri Jan 09 03:00:00 EST 2009
NAME

If n is composite, replace n by the concatenation of its proper divisors, otherwise a(n) = n.

Primes of the form r(r(r(r(n)+1)+1)+1)+1, where A141468(n)=r(n)=n-th nonprime.

DATA

1, 2, 3, 2, 5, 23, 7, 24, 3, 25, 11, 2346, 13, 27, 35, 248, 17, 2369, 19, 24510, 37, 67, 71, 101, 103, 109, 127, 137, 139, 151, 157, 179, 191, 197, 199, 211, 23, 2346812, 5, 213, 39, 24714, 29, 23561015, 31, 24816, 227, 233, 239, 241, 257, 263, 271, 277, 281, 283, 311, 217, 57, 234691218, 37, 219, 313, 24581020, 41, 23671421, 43, 241122, 35915, 223, 47, 23468121624, 7331, 347, 353, 359, 367, 373, 379, 389, 401, 419, 431, 443, 457, 461, 467, 499, 503, 509, 521, 523, 541, 547, 557, 563

OFFSET

1,21

EXAMPLE

If n=1, then

r(r(r(r(1)+1)+1)+1)+1=r(r(r(0+1)+1)+1)+1=r(r(r(1)+1)+1)+1=r(r(0+1)+1)+1=r(r(1)+1)+1=r(0+1)+1=r(1)+1=0+1=1

(nonprime).

If n=2, then

r(r(r(r(2)+1)+1)+1)+1=r(r(r(1+1)+1)+1)+1=r(r(r(2)+1)+1)+1=r(r(1+1)+1)+1=r(r(2)+1)+1=r(1+1)+1=r(2)+1=1+1=2=a(1).

If n=3, then

r(r(r(r(3)+1)+1)+1)+1=r(r(r(4+1)+1)+1)+1=r(r(r(5)+1)+1)+1=r(r(8+1)+1)+1=r(r(9)+1)+1=r(14+1)+1=r(15)+1=22+1=23=a(2).

If n=4, then

r(r(r(r(4)+1)+1)+1)+1=r(r(r(6+1)+1)+1)+1=r(r(r(7)+1)+1)+1=r(r(10+1)+1)+1=r(r(11)+1)+1=r(16+1)+1=r(17)+1=25+1=26

(nonprime).

If n=5, then

r(r(r(r(5)+1)+1)+1)+1=r(r(r(8+1)+1)+1)+1=r(r(r(9)+1)+1)+1=r(r(14+1)+1)+1=r(r(15)+1)+1=r(22+1)+1=r(23)+1=33+1=34

(nonprime).

If n=6, then

r(r(r(r(6)+1)+1)+1)+1=r(r(r(9+1)+1)+1)+1=r(r(r(10)+1)+1)+1=r(r(15+1)+1)+1=r(r(16)+1)+1=r(24+1)+1=r(25)+1

35+1=36 (nonprime).

If n=7, then

r(r(r(r(7)+1)+1)+1)+1=r(r(r(10+1)+1)+1)+1=r(r(r(11)+1)+1)+1=r(r(16+1)+1)+1=r(r(17)+1)+1=r(25+1)+1=r(26)+1

36+1=37=a(3).

If n=8, then

r(r(r(r(8)+1)+1)+1)+1=r(r(r(12+1)+1)+1)+1=r(r(r(13)+1)+1)+1=r(r(20+1)+1)+1=r(r(21)+1)+1=r(30+1)+1=r(31)+1=44+1=45

(nonprime).

If n=9, then

r(r(r(r(9)+1)+1)+1)+1=r(r(r(14+1)+1)+1)+1=r(r(r(15)+1)+1)+1=r(r(22+1)+1)+1=r(r(23)+1)+1=r(33+1)+1=r(34)+1

48+1=49 (nonprime).

If n=10, then

r(r(r(r(10)+1)+1)+1)+1=r(r(r(15+1)+1)+1)+1=r(r(r(16)+1)+1)+1=r(r(24+1)+1)+1=r(r(25)+1)+1=r(35+1)+1=r(36)+1

50+1=51(nonprime)

If n=11, then

r(r(r(r(11)+1)+1)+1)+1=r(r(r(16+1)+1)+1)+1=r(r(r(17)+1)+1)+1=r(r(25+1)+1)+1=r(r(26)+1)+1=r(36+1)+1=r(37)+1=51+1=52(nonprime),

etc.

MAPLE

A106736 A141468 := proc(n) local dvs option remember ; if isprime(n) or n = 1 then n0; else dvs := [op(numtheory[divisors]for a from procname(n) minus {-1, n} )] ; dvs := sort+1 do if not isprime(dvsa) ; cat(opthen RETURN(dvs)a) ; fi ; od: fi; end: seq(A106736(rep := 4: for n), from 1 to 400 do arep := n ; for i from 1 to rep do arep := A141468(arep)+1..80 ; od: if isprime(arep) then printf("%d, ", arep) ; - fi; od: [From R. J. Mathar (mathar(AT)strw.leidenuniv.nl), Jul 23 2007Sep 05 2008]

KEYWORD

nonn,base,new

nonn

AUTHOR

njas, Jul 20 2007

Juri-Stepan Gerasimov (2stepan(AT)rambler.ru), Aug 25 2008

EXTENSIONS

More terms from 97 removed and extended by R. J. Mathar (mathar(AT)strw.leidenuniv.nl), Jul 23 2007Sep 05 2008

#3 by N. J. A. Sloane at Sun Jun 29 03:00:00 EDT 2008
MAPLE

A106736 := proc(n) local dvs ; if isprime(n) or n = 1 then n; else dvs := [op(numtheory[divisors](n) minus {1, n} )] ; dvs := sort(dvs) ; cat(op(dvs)) ; fi ; end: seq(A106736(n), n=1..80) ; - Richard R. J. Mathar (mathar(AT)strw.leidenuniv.nl), Jul 23 2007

KEYWORD

nonn,base,new

EXTENSIONS

More terms from Richard R. J. Mathar (mathar(AT)strw.leidenuniv.nl), Jul 23 2007

#2 by N. J. A. Sloane at Sat Nov 10 03:00:00 EST 2007
NAME

a(If n is composite, replace n) = semiprime equal to by the sum concatenation of two primes plus 1, its proper divisors, otherwise a(n) =0 n.

DATA

0, 4, 6, 9, 10, 14, 15, 21, 22, 1, 2, 3, 2, 5, 23, 7, 24, 3, 25, 26, 33, 0, 11, 2346, 13, 27, 35, 0, 248, 17, 2369, 19, 24510, 37, 211, 23, 2346812, 5, 213, 39, 0, 4924714, 29, 23561015, 31, 24816, 311, 217, 57, 234691218, 37, 219, 313, 24581020, 41, 23671421, 43, 241122, 35915, 223, 47, 23468121624, 7

OFFSET

0,1,2

COMMENTS

Iff a(n)=0 then a(n) is even semiprime such that for the Golbach conjecture is equal to the sum of two primes.

EXAMPLE

a(1)=0 because 4 is not equal to the sum of two primes plus 1;

a(3)=6 because 6=2+3+1.

MAPLE

A106736 := proc(n) local dvs ; if isprime(n) or n = 1 then n; else dvs := [op(numtheory[divisors](n) minus {1, n} )] ; dvs := sort(dvs) ; cat(op(dvs)) ; fi ; end: seq(A106736(n), n=1..80) ; - Richard J. Mathar (mathar(AT)strw.leidenuniv.nl), Jul 23 2007

CROSSREFS
KEYWORD

easy,nonn,newbase

AUTHOR

Giovanni Teofilatto (g.teofilatto(AT)tiscalinet.it), May 15 2005

njas, Jul 20 2007

EXTENSIONS

More terms from Richard J. Mathar (mathar(AT)strw.leidenuniv.nl), Jul 23 2007

#1 by N. J. A. Sloane at Tue Jul 19 03:00:00 EDT 2005
NAME

a(n) = semiprime equal to the sum of two primes plus 1, otherwise a(n)=0.

DATA

0, 4, 6, 9, 10, 14, 15, 21, 22, 25, 26, 33, 0, 35, 0, 39, 0, 49

OFFSET

0,2

COMMENTS

Iff a(n)=0 then a(n) is even semiprime such that for the Golbach conjecture is equal to the sum of two primes.

EXAMPLE

a(1)=0 because 4 is not equal to the sum of two primes plus 1;

a(3)=6 because 6=2+3+1.

KEYWORD

easy,nonn

AUTHOR

Giovanni Teofilatto (g.teofilatto(AT)tiscalinet.it), May 15 2005

STATUS

approved