reviewed
approved
reviewed
approved
proposed
reviewed
editing
proposed
Primes of the form r(r(r(r(n)+1)+1)+1)+1, where A141468(n) = r(n) = n-th nonprime.
If n=1, then:
If n=2, then:
If n=3, then:
If n=4, then:
If n=5, then:
If n=6, then:
If n=7, then:
If n=8, then:
If n=9, then:
If n=10, then:
If n=11, then:
A141468 := proc(n) option remember ; if n = 1 then 0; else for a from procname(n-1)+1 do if not isprime(a) then RETURN(a); fi; od: fi; end: rep := 4: for n from 1 to 400 do arep := n ; for i from 1 to rep do arep := A141468(arep)+1 ; od: if isprime(arep) then printf("%d, ", arep) ; fi; od: [From _# _R. J. Mathar_, Sep 05 2008]
approved
editing
_Juri-Stepan Gerasimov (2stepan(AT)rambler.ru), _, Aug 25 2008
A141468 := proc(n) option remember ; if n = 1 then 0; else for a from procname(n-1)+1 do if not isprime(a) then RETURN(a); fi; od: fi; end: rep := 4: for n from 1 to 400 do arep := n ; for i from 1 to rep do arep := A141468(arep)+1 ; od: if isprime(arep) then printf("%d, ", arep) ; fi; od: [From _R. J. Mathar (mathar(AT)strw.leidenuniv.nl), _, Sep 05 2008]
97 removed and extended by _R. J. Mathar (mathar(AT)strw.leidenuniv.nl), _, Sep 05 2008
If n is composite, replace n by the concatenation of its proper divisors, otherwise a(n) = n.
Primes of the form r(r(r(r(n)+1)+1)+1)+1, where A141468(n)=r(n)=n-th nonprime.
1, 2, 3, 2, 5, 23, 7, 24, 3, 25, 11, 2346, 13, 27, 35, 248, 17, 2369, 19, 24510, 37, 67, 71, 101, 103, 109, 127, 137, 139, 151, 157, 179, 191, 197, 199, 211, 23, 2346812, 5, 213, 39, 24714, 29, 23561015, 31, 24816, 227, 233, 239, 241, 257, 263, 271, 277, 281, 283, 311, 217, 57, 234691218, 37, 219, 313, 24581020, 41, 23671421, 43, 241122, 35915, 223, 47, 23468121624, 7331, 347, 353, 359, 367, 373, 379, 389, 401, 419, 431, 443, 457, 461, 467, 499, 503, 509, 521, 523, 541, 547, 557, 563
1,21
If n=1, then
r(r(r(r(1)+1)+1)+1)+1=r(r(r(0+1)+1)+1)+1=r(r(r(1)+1)+1)+1=r(r(0+1)+1)+1=r(r(1)+1
(nonprime).
If n=2, then
r(r(r(r(2)+1)+1)+1)+1=r(r(r(1+1)+1)+1)+1=r(r(r(2)+1)+1)+1=r(r(1+1)+1)+1=r(r(2)+1
If n=3, then
r(r(r(r(3)+1)+1)+1)+1=r(r(r(4+1)+1)+1)+1=r(r(r(5)+1)+1)+1=r(r(8+1)+1)+1=r(r(9)+1
If n=4, then
r(r(r(r(4)+1)+1)+1)+1=r(r(r(6+1)+1)+1)+1=r(r(r(7)+1)+1)+1=r(r(10+1)+1)+1=r(r(11)+1
(nonprime).
If n=5, then
r(r(r(r(5)+1)+1)+1)+1=r(r(r(8+1)+1)+1)+1=r(r(r(9)+1)+1)+1=r(r(14+1)+1)+1=r(r(15)+1
(nonprime).
If n=6, then
r(r(r(r(6)+1)+1)+1)+1=r(r(r(9+1)+1)+1)+1=r(r(r(10)+1)+1)+1=r(r(15+1)+1)+1=r(r(16
35+1=36 (nonprime).
If n=7, then
r(r(r(r(7)+1)+1)+1)+1=r(r(r(10+1)+1)+1)+1=r(r(r(11)+1)+1)+1=r(r(16+1)+1)+1=r(r(17
36+1=37=a(3).
If n=8, then
r(r(r(r(8)+1)+1)+1)+1=r(r(r(12+1)+1)+1)+1=r(r(r(13)+1)+1)+1=r(r(20+1)+1)+1=r(r(21
(nonprime).
If n=9, then
r(r(r(r(9)+1)+1)+1)+1=r(r(r(14+1)+1)+1)+1=r(r(r(15)+1)+1)+1=r(r(22+1)+1)+1=r(r(23
48+1=49 (nonprime).
If n=10, then
r(r(r(r(10)+1)+1)+1)+1=r(r(r(15+1)+1)+1)+1=r(r(r(16)+1)+1)+1=r(r(24+1)+1)+1=r(r(25
50+1=51(nonprime)
If n=11, then
r(r(r(r(11)+1)+1)+1)+1=r(r(r(16+1)+1)+1)+1=r(r(r(17)+1)+1)+1=r(r(25+1)+1)+1=r(r(26
etc.
A106736 A141468 := proc(n) local dvs option remember ; if isprime(n) or n = 1 then n0; else dvs := [op(numtheory[divisors]for a from procname(n) minus {-1, n} )] ; dvs := sort+1 do if not isprime(dvsa) ; cat(opthen RETURN(dvs)a) ; fi ; od: fi; end: seq(A106736(rep := 4: for n), from 1 to 400 do arep := n ; for i from 1 to rep do arep := A141468(arep)+1..80 ; od: if isprime(arep) then printf("%d, ", arep) ; - fi; od: [From R. J. Mathar (mathar(AT)strw.leidenuniv.nl), Jul 23 2007Sep 05 2008]
nonn,base,new
nonn
njas, Jul 20 2007
Juri-Stepan Gerasimov (2stepan(AT)rambler.ru), Aug 25 2008
More terms from 97 removed and extended by R. J. Mathar (mathar(AT)strw.leidenuniv.nl), Jul 23 2007Sep 05 2008
nonn,base,new
More terms from Richard R. J. Mathar (mathar(AT)strw.leidenuniv.nl), Jul 23 2007
a(If n is composite, replace n) = semiprime equal to by the sum concatenation of two primes plus 1, its proper divisors, otherwise a(n) =0 n.
0, 4, 6, 9, 10, 14, 15, 21, 22, 1, 2, 3, 2, 5, 23, 7, 24, 3, 25, 26, 33, 0, 11, 2346, 13, 27, 35, 0, 248, 17, 2369, 19, 24510, 37, 211, 23, 2346812, 5, 213, 39, 0, 4924714, 29, 23561015, 31, 24816, 311, 217, 57, 234691218, 37, 219, 313, 24581020, 41, 23671421, 43, 241122, 35915, 223, 47, 23468121624, 7
0,1,2
Iff a(n)=0 then a(n) is even semiprime such that for the Golbach conjecture is equal to the sum of two primes.
a(1)=0 because 4 is not equal to the sum of two primes plus 1;
a(3)=6 because 6=2+3+1.
easy,nonn,newbase
Giovanni Teofilatto (g.teofilatto(AT)tiscalinet.it), May 15 2005
njas, Jul 20 2007
More terms from Richard J. Mathar (mathar(AT)strw.leidenuniv.nl), Jul 23 2007
a(n) = semiprime equal to the sum of two primes plus 1, otherwise a(n)=0.
0, 4, 6, 9, 10, 14, 15, 21, 22, 25, 26, 33, 0, 35, 0, 39, 0, 49
0,2
Iff a(n)=0 then a(n) is even semiprime such that for the Golbach conjecture is equal to the sum of two primes.
a(1)=0 because 4 is not equal to the sum of two primes plus 1;
a(3)=6 because 6=2+3+1.
easy,nonn
Giovanni Teofilatto (g.teofilatto(AT)tiscalinet.it), May 15 2005
approved