proposed
approved
proposed
approved
editing
proposed
For n=1 , j(1,1) = 1, j(2,1) = 10*j(1,1) + 1 , then j(i,1) = 10*j(i-1,1) - j(i-3).
For n>1 , j(1,n) = 1, j(2,n) = 4*n^3 - 4*n^2 + 2*n - 1, j(3,n) = 4*n^3 + 4*n^2 + 2*n+1 , j(4,n) = (8*n^2+2)*j(2,n) + 1 then j(i,n) = (8*n^2+2)*j(i-2) - j(i-4,n).
For n=a(1 j) = 11, for n > 1 ja(n) = 4*n^3 - 4*n^2 + 2*n - 1, for n > 1, k sequence = A106232.
G.f.: x*(10*x^4-39*x^3+67*x^2-25*x+11) / (x-1)^4. [_- _Colin Barker_, Mar 06 2013]
(PARI) a(n) = if(n==1, 11, 4*n^3-4*n^2+2*n-1); \\ Jinyuan Wang, Apr 07 2020
approved
editing
<a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).
<a href="/index/Rec">Index to sequences with entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).
<a href="/index/Rea#recLCCRec">Index to sequences with linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).
proposed
approved
editing
proposed
For j there is always a recurrence.
For n=1 j(1,1)=1, j(2,1)=10*j(1,1)+1 then j(i,1)=10*j(i-1,1)-j(i-3).
For j there is alway a recurrence for n=1 j(1,1)=1, j(2,1)=10*j(1,1)+1 then j(i,1)=10*j(i-1,1)-j(i-3) for n>1 j(1,n)=1, j(2,n)=4*n^3-4*n^2+2*n-1, j(3,n)=4*n^3+4*n^2+2*n+1 j(4,n)=(8*n^2+2)*j(2,n)+1 then j(i,n)=(8*n^2+2)*j(i-2)-j(i-4,n).
For n=1 j=11, for n > 1 j(n) = 4*n^3 - 4*n^2 + 2*n - 1 , k sequence = A106232.
approved
editing
proposed
approved