login

Revision History for A105693

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
a(n) = Fibonacci(2n+2)-2^n.
(history; published version)
#36 by Michael De Vlieger at Thu May 23 11:56:43 EDT 2024
STATUS

proposed

approved

#35 by Michel Marcus at Thu May 23 11:00:52 EDT 2024
STATUS

editing

proposed

#34 by Michel Marcus at Thu May 23 11:00:44 EDT 2024
REFERENCES

Czabarka, É., Flórez, R., Junes, L., & Ramírez, J. L. (2018). Enumerations of peaks and valleys on non-decreasing Dyck paths. Discrete Mathematics, 341(10), 2789-2807. See Table 4.

LINKS

E. Czabarka et al, <a href="https://doi.org/10.1016/j.disc.2018.06.032">Enumerations of peaks and valleys on non-decreasing Dyck paths</a>, Disc. Math. 341 (2018) 2789-2807. See Table 4.

FORMULA

G.f.: x(1-x)/((1-2x)(1-3x+x^2)).

G.f.: x(1-x)/((1-2x)(1-3x+x^2)); a(n) = sum{k=0..n+1, binomial(n+1, k+1)*sum{j=0..floor(k/2), F(k-2j)}}.

STATUS

approved

editing

#33 by Alois P. Heinz at Mon Mar 04 15:05:52 EST 2024
STATUS

proposed

approved

#32 by Michael De Vlieger at Mon Mar 04 14:49:13 EST 2024
STATUS

editing

proposed

#31 by Michael De Vlieger at Mon Mar 04 14:49:11 EST 2024
LINKS

Manosij Ghosh Dastidar and Michael Wallner, <a href="https://arxiv.org/abs/2402.17849">Bijections and congruences involving lattice paths and integer compositions</a>, arXiv:2402.17849 [math.CO], 2024. See p. 22.

STATUS

approved

editing

#30 by Charles R Greathouse IV at Thu Sep 08 08:45:17 EDT 2022
PROG

(MAGMAMagma) [Fibonacci(2*n+2)-2^n: n in [0..30]]; // Vincenzo Librandi, Apr 21 2011

Discussion
Thu Sep 08
08:45
OEIS Server: https://oeis.org/edit/global/2944
#29 by Alois P. Heinz at Sun Oct 28 12:07:52 EDT 2018
STATUS

editing

approved

#28 by Alois P. Heinz at Sun Oct 28 12:07:50 EDT 2018
CROSSREFS
STATUS

approved

editing

#27 by N. J. A. Sloane at Tue Sep 18 21:26:54 EDT 2018
STATUS

editing

approved