(MAGMAMagma) [Fibonacci(k): k in [1..n], n in [1..15]]; // G. C. Greubel, Jul 13 2019
(MAGMAMagma) [Fibonacci(k): k in [1..n], n in [1..15]]; // G. C. Greubel, Jul 13 2019
editing
approved
Boris Putievskiy, <a href="http://arxiv.org/abs/1212.2732">Transformations Integer Sequences And Pairing Functions</a> , arXiv:1212.2732 [math.CO], 2012.
approved
editing
reviewed
approved
proposed
reviewed
editing
proposed
(PARI) for(n=1, 15, for(k=1, n, print1(fibonaccfibonacci(k), ", "))) \\ G. C. Greubel, Jul 13 2019
approved
editing
proposed
approved
editing
proposed
1, 1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 3, 5, 1, 1, 2, 3, 5, 8, 1, 1, 2, 3, 5, 8, 13, 1, 1, 2, 3, 5, 8, 13, 21, 1, 1, 2, 3, 5, 8, 13, 21, 34, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233
Boris Putievskiy, <a href="http://arxiv.org/abs/1212.2732">Transformations Integer Sequences And Pairing Functions</a> arXiv:1212.2732 [math.CO], 2012.
T(n,k) = A000045(k), 1<=k<=n. - R. J. Mathar, May 02 2008
1;
1, 1;
1, 1, 2;
1, 1, 2, 3;
1, 1, 2, 3, 5;
1, 1, 2, 3, 5, 8;
1, 1, 2, 3, 5, 8, 13; ...
...
Table[Fibonacci[k], {n, 15}, {k, n}]//Flatten (* G. C. Greubel, Jul 13 2019 *)
(PARI) for(n=1, 15, for(k=1, n, print1(fibonacc(k), ", "))) \\ G. C. Greubel, Jul 13 2019
(MAGMA) [Fibonacci(k): k in [1..n], n in [1..15]]; // G. C. Greubel, Jul 13 2019
(Sage) [[fibonacci(k) for k in (1..n)] for n in (1..15)] # G. C. Greubel, Jul 13 2019
(GAP) Flat(List([1..15], n-> List([1..n], Fibonacci(k) ))) # G. C. Greubel, Jul 13 2019
approved
editing