proposed
approved
proposed
approved
editing
proposed
Select[ Ceiling@ Im@ ZetaZero@ Range@ 600, 340, PrimeQ] (* Robert G. Wilson v, Jan 27 2015 *)
Select[ Ceiling@ Im@ ZetaZero@ Range@ 600, PrimeQ] (* Robert G. Wilson v, Jan 27 2015 *)
approved
editing
_Jani Melik (jani.melik(AT)gmail.com), _, May 20 2008
Multiplicative suborder of 4 (mod 2n+1) = sord(4, 2n+1).
Smallest integer greater than or equal to imaginary part of zeros of Riemann zeta function which is prime.
0, 1, 1, 3, 3, 5, 3, 2, 2, 9, 3, 11, 5, 9, 7, 5, 5, 6, 9, 6, 5, 7, 6, 23, 21, 4, 13, 10, 9, 29, 15, 3, 3, 33, 11, 35, 9, 10, 15, 39, 27, 41, 4, 14, 11, 6, 5, 18, 12, 15, 25, 51, 6, 53, 9, 18, 7, 22, 6, 12, 55, 10, 25, 7, 7, 65, 9, 18, 17, 69, 23, 30, 7, 21, 37, 15, 12, 10, 13, 26, 33, 81, 10
31, 41, 53, 61, 73, 83, 89, 139, 151, 151, 157, 179, 193, 197, 199, 257, 277, 283, 311, 313, 337, 347, 367, 379, 389, 397, 409, 419, 421, 431, 433, 439, 443, 457, 461, 463, 467, 479, 479, 487, 499, 503, 509, 521, 523, 541, 541, 557, 563, 569, 571, 587, 593
0,4
1,1
a(n) is minimum e for which 4^e = +/-1 mod 2n+1, or zero if no e exists. a(0) is the only zero in the sequence.
H. Cohen, Course in Computational Algebraic Number Theory, Springer, 1993, p. 25, Algorithm 1.4.3
H. J. Smith, Andrew Michael Odlyzko, <a href="http://www.geocitiesdtc.umn.comedu/~odlyzko/hjsmithhzetadownloadindex.html#XICalc">XICalc - Extra Precision Integer Calculator.Tables of zeros of the Riemann zeta function</a>.
E. W. Weisstein, <a href="http://mathworld.wolfram.com/MultiplicativeOrder.html">Link to a section of The World of Mathematics</a>, Multiplicative Order.
S. Wolfram, <a href="http://www.stephenwolfram.com/publications/articles/ca/84-properties/9/text.html">Algebraic Properties of Cellular Automata (1984)</a>, Appendix B.
a(1)= 31. 4th zero of Riemann zeta function is 30.424876126... and the smallest integer greater or equal which is prime is 31.
easy,nonn,new
nonn
Harry J. Smith Jani Melik (hjsmithhjani.melik(AT)sbcglobalgmail.netcom), Feb 11 2005May 20 2008
Multiplicative suborder of 4 (mod 2n+1) = sord(4, 2n+1).
0, 1, 1, 3, 3, 5, 3, 2, 2, 9, 3, 11, 5, 9, 7, 5, 5, 6, 9, 6, 5, 7, 6, 23, 21, 4, 13, 10, 9, 29, 15, 3, 3, 33, 11, 35, 9, 10, 15, 39, 27, 41, 4, 14, 11, 6, 5, 18, 12, 15, 25, 51, 6, 53, 9, 18, 7, 22, 6, 12, 55, 10, 25, 7, 7, 65, 9, 18, 17, 69, 23, 30, 7, 21, 37, 15, 12, 10, 13, 26, 33, 81, 10
0,4
a(n) is minimum e for which 4^e = +/-1 mod 2n+1, or zero if no e exists. a(0) is the only zero in the sequence.
H. Cohen, Course in Computational Algebraic Number Theory, Springer, 1993, p. 25, Algorithm 1.4.3
H. J. Smith, <a href="http://www.geocities.com/hjsmithh/download.html#XICalc">XICalc - Extra Precision Integer Calculator.</a>
E. W. Weisstein, <a href="http://mathworld.wolfram.com/MultiplicativeOrder.html">Link to a section of The World of Mathematics</a>, Multiplicative Order.
S. Wolfram, <a href="http://www.stephenwolfram.com/publications/articles/ca/84-properties/9/text.html">Algebraic Properties of Cellular Automata (1984)</a>, Appendix B.
easy,nonn,new
Harry J. Smith (hjsmithh(AT)sbcglobal.net), Feb 11 2005
approved