login

Revision History for A103490

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Smallest integer greater than or equal to imaginary part of zeros of Riemann zeta function which is prime.
(history; published version)
#8 by Bruno Berselli at Tue Jan 27 17:21:59 EST 2015
STATUS

proposed

approved

#7 by Robert G. Wilson v at Tue Jan 27 16:41:54 EST 2015
STATUS

editing

proposed

#6 by Robert G. Wilson v at Tue Jan 27 16:41:51 EST 2015
MATHEMATICA

Select[ Ceiling@ Im@ ZetaZero@ Range@ 600, 340, PrimeQ] (* Robert G. Wilson v, Jan 27 2015 *)

#5 by Robert G. Wilson v at Tue Jan 27 16:40:47 EST 2015
MATHEMATICA

Select[ Ceiling@ Im@ ZetaZero@ Range@ 600, PrimeQ] (* Robert G. Wilson v, Jan 27 2015 *)

STATUS

approved

editing

#4 by Russ Cox at Sat Mar 31 10:24:25 EDT 2012
AUTHOR

_Jani Melik (jani.melik(AT)gmail.com), _, May 20 2008

Discussion
Sat Mar 31
10:24
OEIS Server: https://oeis.org/edit/global/420
#3 by N. J. A. Sloane at Sun Jun 29 03:00:00 EDT 2008
NAME

Multiplicative suborder of 4 (mod 2n+1) = sord(4, 2n+1).

Smallest integer greater than or equal to imaginary part of zeros of Riemann zeta function which is prime.

DATA

0, 1, 1, 3, 3, 5, 3, 2, 2, 9, 3, 11, 5, 9, 7, 5, 5, 6, 9, 6, 5, 7, 6, 23, 21, 4, 13, 10, 9, 29, 15, 3, 3, 33, 11, 35, 9, 10, 15, 39, 27, 41, 4, 14, 11, 6, 5, 18, 12, 15, 25, 51, 6, 53, 9, 18, 7, 22, 6, 12, 55, 10, 25, 7, 7, 65, 9, 18, 17, 69, 23, 30, 7, 21, 37, 15, 12, 10, 13, 26, 33, 81, 10

31, 41, 53, 61, 73, 83, 89, 139, 151, 151, 157, 179, 193, 197, 199, 257, 277, 283, 311, 313, 337, 347, 367, 379, 389, 397, 409, 419, 421, 431, 433, 439, 443, 457, 461, 463, 467, 479, 479, 487, 499, 503, 509, 521, 523, 541, 541, 557, 563, 569, 571, 587, 593

OFFSET

0,4

1,1

COMMENTS

a(n) is minimum e for which 4^e = +/-1 mod 2n+1, or zero if no e exists. a(0) is the only zero in the sequence.

REFERENCES

H. Cohen, Course in Computational Algebraic Number Theory, Springer, 1993, p. 25, Algorithm 1.4.3

LINKS

H. J. Smith, Andrew Michael Odlyzko, <a href="http://www.geocitiesdtc.umn.comedu/~odlyzko/hjsmithhzeta_tables/downloadindex.html#XICalc">XICalc - Extra Precision Integer Calculator.Tables of zeros of the Riemann zeta function</a>.

E. W. Weisstein, <a href="http://mathworld.wolfram.com/MultiplicativeOrder.html">Link to a section of The World of Mathematics</a>, Multiplicative Order.

S. Wolfram, <a href="http://www.stephenwolfram.com/publications/articles/ca/84-properties/9/text.html">Algebraic Properties of Cellular Automata (1984)</a>, Appendix B.

EXAMPLE

a(1)= 31. 4th zero of Riemann zeta function is 30.424876126... and the smallest integer greater or equal which is prime is 31.

CROSSREFS
KEYWORD

easy,nonn,new

nonn

AUTHOR

Harry J. Smith Jani Melik (hjsmithhjani.melik(AT)sbcglobalgmail.netcom), Feb 11 2005May 20 2008

#2 by N. J. A. Sloane at Sat Apr 09 03:00:00 EDT 2005
CROSSREFS
KEYWORD

easy,nonn,new

#1 by N. J. A. Sloane at Sun Feb 20 03:00:00 EST 2005
NAME

Multiplicative suborder of 4 (mod 2n+1) = sord(4, 2n+1).

DATA

0, 1, 1, 3, 3, 5, 3, 2, 2, 9, 3, 11, 5, 9, 7, 5, 5, 6, 9, 6, 5, 7, 6, 23, 21, 4, 13, 10, 9, 29, 15, 3, 3, 33, 11, 35, 9, 10, 15, 39, 27, 41, 4, 14, 11, 6, 5, 18, 12, 15, 25, 51, 6, 53, 9, 18, 7, 22, 6, 12, 55, 10, 25, 7, 7, 65, 9, 18, 17, 69, 23, 30, 7, 21, 37, 15, 12, 10, 13, 26, 33, 81, 10

OFFSET

0,4

COMMENTS

a(n) is minimum e for which 4^e = +/-1 mod 2n+1, or zero if no e exists. a(0) is the only zero in the sequence.

REFERENCES

H. Cohen, Course in Computational Algebraic Number Theory, Springer, 1993, p. 25, Algorithm 1.4.3

LINKS

H. J. Smith, <a href="http://www.geocities.com/hjsmithh/download.html#XICalc">XICalc - Extra Precision Integer Calculator.</a>

E. W. Weisstein, <a href="http://mathworld.wolfram.com/MultiplicativeOrder.html">Link to a section of The World of Mathematics</a>, Multiplicative Order.

S. Wolfram, <a href="http://www.stephenwolfram.com/publications/articles/ca/84-properties/9/text.html">Algebraic Properties of Cellular Automata (1984)</a>, Appendix B.

CROSSREFS
KEYWORD

easy,nonn,new

AUTHOR

Harry J. Smith (hjsmithh(AT)sbcglobal.net), Feb 11 2005

STATUS

approved