login

Revision History for A102095

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Greatest edge length of a cuboid having integer edge lengths, volume n and minimal surface area under those restrictions.
(history; published version)
#6 by Susanna Cuyler at Sat Oct 12 04:45:30 EDT 2019
STATUS

proposed

approved

#5 by Michel Marcus at Sat Oct 12 00:27:47 EDT 2019
STATUS

editing

proposed

#4 by Michel Marcus at Sat Oct 12 00:27:43 EDT 2019
LINKS

Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Cuboid.html">"Cuboid."</a>

Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/SampleVariance.html">"Sample Variance."</a>

Wikipedia, <a href="http://en.wikipedia.org/wiki/Nonlinear_programming">"Nonlinear Programming."</a>

STATUS

approved

editing

#3 by N. J. A. Sloane at Fri Feb 27 03:00:00 EST 2009
NAME

Greatest edge length of a cuboid having integer edge lengths, volume n, and minimal surface area under those restrictions.

EXAMPLE

a(16) = 4 because the cuboid of integer edge lengths, volume = 16, and minimal possible surface area under those restrictions has edge lengths {4,2,2}

KEYWORD

nonn,new

nonn

#2 by N. J. A. Sloane at Sun Jun 29 03:00:00 EDT 2008
LINKS

Eric W. Weisstein, 's World of Mathematics, <a href="http://mathworld.wolfram.com/Cuboid.html">"Cuboid."</a>

Eric W. Weisstein, 's World of Mathematics, <a href="http://mathworld.wolfram.com/SampleVariance.html">"Sample Variance."</a>

KEYWORD

nonn,new

nonn

#1 by N. J. A. Sloane at Sun Feb 20 03:00:00 EST 2005
NAME

Greatest edge length of a cuboid having integer edge lengths, volume n, and minimal surface area under those restrictions.

DATA

1, 2, 3, 2, 5, 3, 7, 2, 3, 5, 11, 3, 13, 7, 5, 4, 17, 3, 19, 5, 7, 11, 23, 4, 5, 13, 3, 7, 29, 5, 31, 4, 11, 17, 7, 4, 37, 19, 13, 5, 41, 7, 43, 11, 5, 23, 47, 4, 7, 5, 17, 13, 53, 6, 11, 7, 19, 29, 59, 5, 61, 31, 7, 4, 13, 11, 67, 17, 23, 7, 71, 6, 73, 37, 5, 19, 11, 13, 79, 5, 9, 41, 83, 7

OFFSET

1,2

COMMENTS

Finding a(n) given n is a fundamental problem from integer nonlinear programming, equivalent to minimizing the sum a+b+c when a*b*c=n and a,b,c are integers. a(n) is not strictly prime. a(n) > 1 for all n>1 a(n) <= n for all n. a(n) = n iff n is prime (a(1)=1).

LINKS

Eric W. Weisstein, <a href="http://mathworld.wolfram.com/Cuboid.html">"Cuboid."</a>

Eric W. Weisstein, <a href="http://mathworld.wolfram.com/SampleVariance.html">"Sample Variance."</a>

Wikipedia, <a href="http://en.wikipedia.org/wiki/Nonlinear_programming">"Nonlinear Programming."</a>

EXAMPLE

a(16) = 4 because the cuboid of integer edge lengths, volume = 16, and minimal possible surface area under those restrictions has edge lengths {4,2,2}

MATHEMATICA

Clear[fac, faclist, red, bool, n, a, b, c, i, ai, bi, ci]

red[n_] := Reduce[{a*b*c == n, a >= b >= c > 0}, {a, b, c}, Integers];

faclist[n_] := (

If[PrimeQ[n] || n == 1, Return[{n + 1 + 1, {n, 1, 1}}]; Abort[]];

bool = red[n];

Reap[For[i = 1, i <= Length[bool], i++,

ai = bool[[i]][[1]][[2]];

bi = bool[[i]][[2]][[2]];

ci = bool[[i]][[3]][[2]];

Sow[{ai + bi + ci, {ai, bi, ci}}]]][[2]][[1]])

fac[n_] := (

If[PrimeQ[n] || n == 1, Return[{n, 1, 1}]; Abort[]];

faclist[n][[1]][[2]])

Table[fac[k][[1]], {k, 1, 84}]

CROSSREFS
KEYWORD

nonn

AUTHOR

Joseph Biberstine (jrbibers(AT)indiana.edu), Dec 29 2004

STATUS

approved