proposed
approved
proposed
approved
editing
proposed
M. Krasner, Le nombre des surcorps primitifs d'un degre donne et le nombre des surcorps metagaloisiens d'un degre donne d'un corp corps de nombre nombres p-adiqueadiques. Comptes Redus Rendus Hebdomadaires, Academie des Science, Sciences, Paris 254, 255, 1962
approved
editing
p:=5; eps:=proc()local p, s, i, sum; p:=args[1]; s:=args[2]; if s=-1 then return -infinity; fi; if s=0 then return 0; fi; sum:=0; for i from 1 to s do sum:=sum+1/p^i; od; return sum; end: ppart:=proc() local p, n; p:=args[1]; n:=args[2]; return igcd(n, p^n); end: qpart:=proc() local p, n; p:=args[1]; n:=args[2]; return n/igcd(n, p^n); end: logp:=proc() local p, pp; p:=args[1]; pp:=args[2]; if op(ifactors(pp))[2]=[] then return 0; else return op(op(ifactors(pp))[2])[2]; fi; end: summe:=0; m:=logp(p, ppart(p, n)); h:=qpart(p, n); for s from 0 to m do summe:=summe+(p^(m+s+1)-p^(2*s))/(p-1)*(p^(eps(p, s)*n)-p^(eps(p, s-1)*n)); od; a(n):=sigma(h)*summe;
nonn,new
nonn
a(n)=(sum_{d|h}d)*(sum_{s=0}^m (p^(m+s+1)-p^(2*s))/(p-1)*(p^(eps(s)*n)-p^(eps(s-1)*n))), where p=5, n=h*p^m, with gcd(h, p)=1, eps(-1)=-infinity, eps(0)=0 and eps(s)=sum_{i=1 to s} 1/(p^i)
nonn,new
nonn
Number of all extensions over Q_5 with degree n in the algebraic closure of Q_5.
1, 3, 4, 7, 106, 12, 8, 15, 13, 1818, 12, 28, 14, 24, 12424, 31, 18, 39, 20, 109242, 32, 36, 24, 60, 8281131, 42, 40, 56, 30, 4687272, 32, 63, 48, 54, 15624848, 91, 38, 60, 56, 146484090, 42, 96, 44, 84, 634765378, 72, 48, 124, 57
1,2
M. Krasner, Le nombre des surcorps primitifs d'un degre donne et le nombre des surcorps metagaloisiens d'un degre donne d'un corp de nombre p-adique. Comptes Redus Hebdomadaires, Academie des Science, Paris 254, 255, 1962
a(n)=(sum_{d|h}d)*(sum_{s=0}^m (p^(m+s+1)-p^(2*s))/(p-1)*(p^(eps(s)*n)-p^(eps(s-1)*n))), where p=5, n=h*p^m, with gcd(h,p)=1, eps(-1)=-infinity, eps(0)=0 and eps(s)=sum_{i=1 to s} 1/(p^i)
a(2)=3 There are 2 ramified extensions with minimal polynomials x^2-5, x^2-10 and one unramified x^2+4*x+2.
p:=5; eps:=proc()local p, s, i, sum; p:=args[1]; s:=args[2]; if s=-1 then return -infinity; fi; if s=0 then return 0; fi; sum:=0; for i from 1 to s do sum:=sum+1/p^i; od; return sum; end: ppart:=proc() local p, n; p:=args[1]; n:=args[2]; return igcd(n, p^n); end: qpart:=proc() local p, n; p:=args[1]; n:=args[2]; return n/igcd(n, p^n); end: logp:=proc() local p, pp; p:=args[1]; pp:=args[2]; if op(ifactors(pp))[2]=[] then return 0; else return op(op(ifactors(pp))[2])[2]; fi; end: summe:=0; m:=logp(p, ppart(p, n)); h:=qpart(p, n); for s from 0 to m do summe:=summe+(p^(m+s+1)-p^(2*s))/(p-1)*(p^(eps(p, s)*n)-p^(eps(p, s-1)*n)); od; a(n):=sigma(h)*summe;
nonn
Volker Schmitt (clamsi(AT)gmx.net), Nov 24 2004
approved