login

Revision History for A100978

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Number of all extensions over Q_5 with degree n in the algebraic closure of Q_5.
(history; published version)
#6 by Alois P. Heinz at Wed Jan 09 16:41:24 EST 2013
STATUS

proposed

approved

#5 by Michel Marcus at Wed Jan 09 15:27:46 EST 2013
STATUS

editing

proposed

#4 by Michel Marcus at Wed Jan 09 15:20:09 EST 2013
REFERENCES

M. Krasner, Le nombre des surcorps primitifs d'un degre donne et le nombre des surcorps metagaloisiens d'un degre donne d'un corp corps de nombre nombres p-adiqueadiques. Comptes Redus Rendus Hebdomadaires, Academie des Science, Sciences, Paris 254, 255, 1962

STATUS

approved

editing

#3 by N. J. A. Sloane at Fri Sep 29 03:00:00 EDT 2006
MAPLE

p:=5; eps:=proc()local p, s, i, sum; p:=args[1]; s:=args[2]; if s=-1 then return -infinity; fi; if s=0 then return 0; fi; sum:=0; for i from 1 to s do sum:=sum+1/p^i; od; return sum; end: ppart:=proc() local p, n; p:=args[1]; n:=args[2]; return igcd(n, p^n); end: qpart:=proc() local p, n; p:=args[1]; n:=args[2]; return n/igcd(n, p^n); end: logp:=proc() local p, pp; p:=args[1]; pp:=args[2]; if op(ifactors(pp))[2]=[] then return 0; else return op(op(ifactors(pp))[2])[2]; fi; end: summe:=0; m:=logp(p, ppart(p, n)); h:=qpart(p, n); for s from 0 to m do summe:=summe+(p^(m+s+1)-p^(2*s))/(p-1)*(p^(eps(p, s)*n)-p^(eps(p, s-1)*n)); od; a(n):=sigma(h)*summe;

KEYWORD

nonn,new

nonn

#2 by N. J. A. Sloane at Fri Feb 24 03:00:00 EST 2006
FORMULA

a(n)=(sum_{d|h}d)*(sum_{s=0}^m (p^(m+s+1)-p^(2*s))/(p-1)*(p^(eps(s)*n)-p^(eps(s-1)*n))), where p=5, n=h*p^m, with gcd(h, p)=1, eps(-1)=-infinity, eps(0)=0 and eps(s)=sum_{i=1 to s} 1/(p^i)

KEYWORD

nonn,new

nonn

#1 by N. J. A. Sloane at Sun Feb 20 03:00:00 EST 2005
NAME

Number of all extensions over Q_5 with degree n in the algebraic closure of Q_5.

DATA

1, 3, 4, 7, 106, 12, 8, 15, 13, 1818, 12, 28, 14, 24, 12424, 31, 18, 39, 20, 109242, 32, 36, 24, 60, 8281131, 42, 40, 56, 30, 4687272, 32, 63, 48, 54, 15624848, 91, 38, 60, 56, 146484090, 42, 96, 44, 84, 634765378, 72, 48, 124, 57

OFFSET

1,2

REFERENCES

M. Krasner, Le nombre des surcorps primitifs d'un degre donne et le nombre des surcorps metagaloisiens d'un degre donne d'un corp de nombre p-adique. Comptes Redus Hebdomadaires, Academie des Science, Paris 254, 255, 1962

FORMULA

a(n)=(sum_{d|h}d)*(sum_{s=0}^m (p^(m+s+1)-p^(2*s))/(p-1)*(p^(eps(s)*n)-p^(eps(s-1)*n))), where p=5, n=h*p^m, with gcd(h,p)=1, eps(-1)=-infinity, eps(0)=0 and eps(s)=sum_{i=1 to s} 1/(p^i)

EXAMPLE

a(2)=3 There are 2 ramified extensions with minimal polynomials x^2-5, x^2-10 and one unramified x^2+4*x+2.

MAPLE

p:=5; eps:=proc()local p, s, i, sum; p:=args[1]; s:=args[2]; if s=-1 then return -infinity; fi; if s=0 then return 0; fi; sum:=0; for i from 1 to s do sum:=sum+1/p^i; od; return sum; end: ppart:=proc() local p, n; p:=args[1]; n:=args[2]; return igcd(n, p^n); end: qpart:=proc() local p, n; p:=args[1]; n:=args[2]; return n/igcd(n, p^n); end: logp:=proc() local p, pp; p:=args[1]; pp:=args[2]; if op(ifactors(pp))[2]=[] then return 0; else return op(op(ifactors(pp))[2])[2]; fi; end: summe:=0; m:=logp(p, ppart(p, n)); h:=qpart(p, n); for s from 0 to m do summe:=summe+(p^(m+s+1)-p^(2*s))/(p-1)*(p^(eps(p, s)*n)-p^(eps(p, s-1)*n)); od; a(n):=sigma(h)*summe;

KEYWORD

nonn

AUTHOR

Volker Schmitt (clamsi(AT)gmx.net), Nov 24 2004

STATUS

approved